
WADDLE – ALWAYS-CANONICAL
INTERMEDIATE REPRESENTATION

by

Eric Fritz

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Engineering

at

The University of Wisconsin-Milwaukee

December 2018

ABSTRACT

WADDLE – ALWAYS-CANONICAL
INTERMEDIATE REPRESENTATION

by

Eric Fritz

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor John Boyland

Program transformations that are able to rely on the presence of canonical properties of

the program undergoing optimization can be written to be more robust and efficient than

an equivalent but generalized transformation that also handles non-canonical programs. If

a canonical property is required but broken earlier in an earlier transformation, it must be

rebuilt (often from scratch). This additional work can be a dominating factor in compilation

time when many transformations are applied over large programs. This dissertation intro-

duces a methodology for constructing program transformations so that the program remains

in an always-canonical form as the program is mutated, making only local changes to restore

broken properties.

ii

© Copyright by Eric Fritz, 2018
All Rights Reserved

iii

TABLE OF CONTENTS

Abstract ii

List of Figures x

1 Introduction 2

1.1 Motivation . 2

1.2 Research Contributions . 4

1.3 Organization . 5

2 Preliminaries 6

2.1 Sequences . 6

2.2 Multisets . 6

2.3 Labels . 7

2.4 Control Flow Graph . 8

2.4.1 Reducibility . 9

2.4.2 Induced Trees . 11

2.4.3 Depth-First Spanning Tree . 12

2.5 Domination . 12

2.5.1 Dominator Tree . 13

2.6 Loops . 13

iv

2.6.1 Loop Nesting . 15

2.6.2 Loop Nesting Forest . 15

2.6.3 Loop Deconstruction . 17

2.6.4 Identification of Reducible Loops . 18

2.6.5 Identification of Irreducible Loops . 18

3 Internal Representation 20

3.1 Syntax . 21

3.1.1 Blocks, Functions, and Programs . 21

3.1.2 Values and Expressions . 22

3.1.3 Block Components . 23

3.1.3.1 Block Parameters and Implicit Parameters 24

3.1.3.2 Instructions . 26

3.1.3.3 Terminators . 28

3.2 Semantics . 29

3.2.1 Function Cloning . 29

3.2.2 Environments . 29

3.2.3 Evaluation . 32

3.3 Type System . 38

Proof Appendix 43

3.A Soundness . 43

4 Properties 50

4.1 Static Single Assignment Form . 50

4.2 Loop-Closed Static Single Assignment Form 53

4.3 Canonical Form . 54

v

5 Related Work 57

5.1 Dominator Tree Construction . 57

5.1.1 Iterative Algorithms . 57

5.1.2 Lengauer-Tarjan Algorithm . 59

5.1.3 Semi-NCA . 61

5.1.4 Linear Time Algorithms . 62

5.2 Dominator Tree Reconstruction . 64

5.2.1 Ramalingam-Reps Algorithm . 65

5.2.2 Dynamic SNCA Algorithm . 66

5.2.3 Depth-Based Heuristic . 68

5.3 SSA Construction . 68

5.4 SSA Reconstruction . 71

6 Transformations 75

6.1 Notation . 75

6.2 Theorems . 76

6.2.1 Symmetric Evaluation . 77

6.2.2 Structural Theorems . 81

Proof Appendix 83

6.A Proof Template for Maintenance of Evaluation 83

6.B Symmetric Evaluation . 90

6.B.1 Symmetric Instructions . 90

6.B.2 Symmetric Function Calls . 93

6.B.3 Symmetric Branch . 94

6.B.4 Symmetric Return . 95

vi

6.C Common Lemmas . 97

7 Canonicalization 99

7.1 SSA Reconstruction . 100

7.2 LCSSA Reconstruction . 105

7.3 Edge Set Splitting . 107

7.4 Repairing Violations . 109

7.4.1 Property 4.3.1 – Unique latch . 109

7.4.2 Property 4.3.2 – Dedicated preheader 110

7.4.3 Property 4.3.3 – Dedicated exits . 111

Proof Appendix 114

7.A SSA Reconstruction . 114

7.B LCSSA Reconstruction . 125

7.C Edge Set Splitting . 134

7.D Unique Latch . 142

7.E Dedicated Preheader . 143

7.F Dedicated Exits . 148

8 Operations 150

8.1 Block Ejection . 150

8.2 Edge Deletion . 152

8.2.1 Change in Path Multiplicity . 155

8.2.2 Change in Paths . 156

8.3 Loop Duplication . 158

Proof Appendix 162

vii

8.A Block Ejection . 162

8.B Delete Edge . 167

9 Optimizations 177

9.1 Straightening . 177

9.2 If Simplification . 179

9.3 Jump Simplification . 181

9.4 Function Inlining . 185

9.5 Loop Unswitching . 188

9.6 Loop Unrolling . 192

9.7 Loop Peeling . 195

Proof Appendix 198

9.A Straightening . 198

9.B If Simplification . 206

9.C Jump Simplification . 212

9.D Function Inlining . 218

9.E Loop Unswitching . 234

9.F Loop Unrolling . 243

9.G Loop Peeling . 252

10 Evaluation 261

10.1 Source Programs . 261

10.2 Methodology . 263

10.3 Single Pass . 265

10.4 Pass Sequence . 267

viii

11 Future Directions 270

Bibliography 274

Curriculum Vitae 281

ix

LIST OF FIGURES

2.1 An example control flow graph containing a loop and a one-armed conditional.

Block content is presented in Section 3.1. 9

2.2 The process of collapsing a reducible graph into its limit graph (incomplete). 10

2.3 The process of collapsing an irreducible graph into its limit graph (incom-

plete). Transformation (T3) is applied to block b so that transformations

(T1) and (T2) can further reduce the graph (incomplete). 11

2.4 A control flow graph with its dominator tree. An edge (b1, b2) in the dominator

tree indicates that idom(b2) = b1. 14

2.5 A control flow graph containing three loops (one nested) shown with its loop

nesting forest. In this example, the set of abstract loops are lb = (b, {b, c, d}, {e}),

lc = (c, {c, d}, {b}), and le = (e, {e, f}, ∅). 16

2.6 An irreducible graph. 18

3.1 Syntax of values, expressions, and types. 23

3.2 A graph annotated with implicit parameters (the second set of parameters). 26

3.3 Implicit parameters for the graph in Figure 3.2. 26

3.4 The syntax of instructions. 27

3.5 The syntax of terminators. 28

3.6 Syntax of terms, environments, nondeterminsm state, and effects. 30

x

3.7 Evaluation rules for instructions excluding call. 33

3.8 Evaluation rules for instructions evaluating abnormally. 34

3.9 Evaluation rules for the invocation of an intrinsic. 35

3.10 Evaluation rules for the switch terminator. 36

3.11 Evaluation rules for the call instruction and return terminator. 37

3.12 Evaluation rule for invoking a program function externally. 38

3.13 Typing environment. 38

3.14 Typing judgments for expressions. 39

3.15 Typing judgments for instruction streams. 40

3.16 Typing judgments for terminators. 41

3.17 Well-typed properties for blocks and functions. 42

4.11 Insertion of a ϕ-node at a join point. The graph on the right uses block

parameters instead of explicit ϕ-nodes. 51

4.12 Euclid’s Algorithm in the ARM instruction set. 53

4.21 Unrolling a loop can affect blocks arbitrarily in the graph. 54

4.31 Violations of canonical form that prevent the efficient hoisting of a loop in-

variant instruction. 55

4.32 Violations of canonical form that prevent the efficient sinking of a instruction

calculated but unused/unobserved in the loop body. 56

5.11 A depth-first spanning tree with flow graph edges shown as dashed lines. . . 60

5.12 A depth-first spanning tree with flow graph edges shown as dashed lines.

The figure on the right is the augmented graph of the microtree with a solid

outline, with the root and blue edges highlighted. 63

5.21 Inserting the sequences of edges (bn−2, bn), (bn−3, bn), . . . , (b1, bn) changes the

immediate dominators of Θ(n) blocks per operation, and Θ(n2) blocks overall. 64

xi

5.22 The deletion (left) or insertion (right) of edge (d, f) requires consequent pro-

cessing of edge (f, j). The set of possibly affected nodes are highlighted in

orange and nca(f, j) is highlighted in blue. 67

5.31 Briggs-minimal places a ϕ-node at the merge point in the graph on the left

as v is live across the blue edge, but pruned SSA does not. Neither Briggs-

minimal nor pruned algorithms places a ϕ-node at the merge point in the

graph on the right. 70

5.41 A simplified jump-threading transformation shows that the static single as-

signment property of a control flow graph can be easily broken. 71

5.42 A control flow graph in broken SSA form (left) can be rewritten so that the

use of r is replaced with the correct reaching definition of the register set

{r1, r2, r3} (right). The middle graph shows the progress of the algorithm

before t1 is discovered to be unnecessary. The uncommitted (but referenced)

block argument is shown in gray. 73

6.21 A simple two-function graph. Block a is the entry to an unnamed function

and block e is the entry to a function called double. 78

7.01 A (very) non-canonical control flow graph and its canonical equivalent. . . . 99

7.11 Inserting parameters to blocks and arguments to block references. 100

7.12 Adding and removing values from the set of implicit block parameters. . . . 101

7.13 Inserting parameters to blocks and arguments to block references identified

by a label. 101

7.14 Rewriting uses of a register violating SSA form. 102

7.15 Finding the nearest reaching definition from a set of definitions D from the

bottom of a block. 103

xii

7.16 Finding the nearest reaching definition from a set of definitions D from the

top of a block. 103

7.17 Remove trivially-defined block parameters. 104

7.21 Insertion of block parameters at the loop boundary. 105

7.22 Repairing LCSSA-violating uses of the register defined by d. 106

7.31 Splitting the red edge set containing (b1, b
′), (b2, b′), and (b3, b

′). 107

7.32 Inserting a block onto each edge in the set E. 108

7.33 Splitting a heterogeneous-direction edge split may create an irreducible region. 108

7.41 Collapsing backedges (l1, h) and (l2, h) into the single backedge (ϵ, h). 110

7.42 Repairing non-unique latch of loop l. 110

7.43 Adding a dedicated preheader for loop with the header h. 111

7.44 Repairing non-dedicated preheader of loop l. 112

7.45 Adding a dedicated exit block to replace non-dedicated exit e of loop with

the header h. 112

7.46 Repairing non-dedicated exit of loop l. 113

8.11 Repairing loop nesting forest by ejecting blocks from a loop. 152

8.12 Ejecting nodes to restore loop nesting forest. 153

8.13 Block ejection creating an undedicated exit. 153

8.14 Block ejection creating an LCSSA violation. 154

8.21 Examples of loop structure changes that can occur after an edge deletion. . . 155

8.22 Replacing a dead block reference with a syntactically unreachable switch case. 156

8.23 Restoring canonical properties after deletion of the dead edge (a, b). 157

8.31 Duplicating the body (and auxiliary data structures) of a loop to be later

linked into the graph. 159

xiii

8.32 Illustration of new edges after duplicating a loop structure. The copy of the

subgraph is enclosed in a gray box, unreachable from the original graph. . . 159

8.33 Illustration of the new dominator subtree (enclosed in a gray box) after du-

plicating the body of a loop. 160

8.34 Illustration of the new loop nesting forest subtree (enclosed in a gray box)

after duplicating the body of the outermost shown loop. 161

9.11 Straightening the edge (p, s) combines the instructions from both blocks into

one. Block parameters of block s and the arguments from block p are replaced

by move instructions. 177

9.12 Collapsing the blocks of a non-critical edge. 178

9.21 Simplifying a switch condition in two stages. 179

9.22 Simplifying a switch terminator with only one possible target. 180

9.31 Simplifying a jump to an empty block in two parts. First, the empty block

b is duplicated. Then, the path (p1, b) is replaced with (p1, b
′) so that both

edges terminating at b and b′ are eligible for straightening. 181

9.32 Duplicating a single control flow path where switching values are known stat-

ically. This transformation creates additional optimization opportunities as

analysis of block b′ is influenced by only one control flow path. 182

9.33 Simplifying a sequence of jumps. 183

9.34 Creation of an irreducible region when simplifying the jump to a loop header. 183

9.35 Domination change after jump simplification. An alternate path to the shaded

blocks (which were previously immediately dominated by b) has been intro-

duced. 184

9.36 Addition of a loop exit after jump simplification. 185

xiv

9.41 Function inlining in two parts. First, the source block is split around the

callsite and a duplicated function body is inserted between these block halves.

Then, blocks that cannot reach an exit of the inlined function are ejected from

the loop containing the call instruction. 187

9.42 Inserting the body of an external function at a callsite. 188

9.51 A Java source-level example of loop unswitching. 189

9.52 Unswitching a loop by duplicating the body and hoisting the loop-invariant

condition to the preheader. Subsequently, the condition on each copy of the

loop can be simplified independently. 190

9.53 Duplicate a loop containing a loop-invariant branch so each loop can be op-

timized independently. 191

9.61 A Java source-level example of (manual) loop-unrolling. 192

9.62 Unrolling the loop by duplicating the body and placing it on the loop’s

backedge. This creates an immediate opportunity to straighten the edge (l, h′).193

9.63 Modify a loop so the body is performed twice per backedge traversal. 194

9.71 A Java source-level example of peeling the first iteration from a loop. 195

9.72 Peeling the loop by duplicating the body and placing it between the preheader

and the backedge. 196

9.73 Peeling a single iteration from the loop to be performed prior to entering the

loop boundary. 197

10.31Runtime Decrease comparisons between incremental maintenance of proper-

ties and complete repair of properties for a single transformation pass appli-

cation. 266

10.32Runtime comparisons between incremental maintenance of properties and

complete repair of properties for a single transformation pass application. . . 268

xv

10.41Runtime results for a single, fixed sequence of optimizations. 269

10.42Number of operations performed during optimization. 269

11.01The standard sequence of LLVM 7.0.0 -O2 passes (read by columns). 272

xvi

1

1 Introduction

This dissertation introduces a methodology for the construction of an optimizing compiler.

Such an optimizer incrementally maintains canonical properties of control flow graph and

ensures that auxiliary data structures remain in a valid state as the control flow graph un-

dergoes mutations. Such mutations include the insertion and deletion of edges, the addition

and removal of blocks to and from the graph, and the movement of instructions.

The primary goal of such a methodology is to reduce or eliminate the need to reconstruct

(from scratch) the canonical properties that are expected to be present in later transforma-

tions. This extra work can lead to a significant increase in runtime if done frequently. Often,

a mutating transformation will break a property in a local way, allowing the property to be

repaired with little complexity.

This methodology is the core of the Waddle compiler project, named after its slow and

awkward steps toward progress. The compiler includes an optimizing backend that is focused

on control flow optimizations operating on an intermediate representation that never breaks

canonical properties outside of a single transformation.

1.1 Motivation

Many existing compiler infrastructures express the program under transformation by a well-

defined internal representation. The LLVM Compiler Infrastructure, the GNU Compiler

Collection, and Oracle’s HotSpot Java Virtual Machine all use a variation of static single

assignment form internally. The properties of such a representation enable more precise

reasoning of the program during transformation and often makes the transformation itself

more efficient.

2

Unfortunately, core properties of the representation may be invalidated by mutation of the

control flow graph. If a property is potentially invalidated during program transformation,

no transformation can rely on its presence. Transformations themselves could be restricted

to the set of operations that do not invalidate the representation. However, this would

drastically decrease the capabilities of the optimizer as the simplest of transformations can

easily break a flowgraph in static single assignment form.

Instead, these properties should be repaired after being broken by a transformation. It

is often too inefficient to rebuild the representation after each transformation from scratch.

Many transformation passes in LLVM, for example, make an attempt to repair as much of

the internal form and external analysis information as possible as the transformation occurs.

Incrementally maintaining such representations in general can be intractable, but in the

context of a specific transformation, there is usually a clear process to fix broken properties

in a local manner. Where applicable, such repairs are performed in an ad-hoc manner and

by hand.

There are two major problems with this approach: fragility and obscurity. Because the

responsibility of repairing broken properties is not enforced by the compiler, there may be

transformations that completely destroy a property, then neglects to repair it. Any future

transformation that depends on that analysis must recompute it from scratch or risk un-

soundess, resulting in a fragile transformation implementation. For transformations that

do attempt to maintain the internal representation, the logic of the transformation is now

intermixed with logic to repair the internal representation. This logic may be non-trivial,

depending on the complexity of the transformation. This negatively affects both readability

and maintainability of a single transformation, resulting in obscure transformation imple-

mentations.

3

Waddle attempts to attenuate these problems by representing programs in a strict, never-

broken canonical form. The structure of the optimizer forces transformation to leave the

program in a semantically-equivalent canonical form. It is an error on the part of the pro-

grammer of the transformation to break this invariant, and such an error causes a hard fault

during execution of the optimizer. This ensures that canonical properties are robust rather

than fragile, and their presence can be guaranteed at the beginning of each transformation.

Each transformation is written, so far as possible, as a composition of smaller and more

general operations over the program where each operation maintains canonical invariants.

This ensures that transformations are intelligible rather than obscure, leaving the heavy

repairs to be performed by a common set of operations shared among transformations.

1.2 Research Contributions

This dissertation makes four major contributions to this line of research, as follows.

(1) A simple kernel IR and deterministic evaluation semantics that is suitable for analysis

of control flow optimizations.

(2) A family of algorithms that incrementally maintains canonical properties of a control

flow graph as it is mutated (e.g. the insertion, deletion, or relocation of a flow edge, the

movement of an instruction, or the insertion or deletion of a block).

(3) An illustration of how the application and composition of these algorithms can to-

gether form non-trivial transformations (e.g. jump threading, loop unswitching, conditional

simplification). Each transformation maintains canonical properties of the program under

transformation, allowing transformations to be reordered and repeated arbitrarily without

requiring intermediate phases to rebuild such properties.

4

(4) An implementation that follows this methodology, and a short experimental evaluation

of the implementation.

1.3 Organization

Chapter 2 provides a foundation for prerequisite concepts related to control flow graphs,

domination, and loop structures, as well as a common notation for sequences and multisets.

Chapter 3 formally defines a syntax, an operational semantics, and a sound type system for

Waddle’s internal representation. Chapter 4 defines the properties of Waddle’s canonical

form. Chapter 5 presents related algorithms for constructing and reconstructing canonical

properties, some of which are used directly by Waddle. Chapter 6 outlines what constitutes

a transformation and gives a brief proof structure that will be used in the appendices for

the following chapters. Chapter 7 presents a family of algorithms to canonicalize a program

and later maintain canonical form. Chapter 8 presents a family of algorithms that are

used as common subprocedures by other transformations. Chapter 9 presents a bag of

classic compiler optimizations written using Waddle’s always-canonical methodology, using

the subprocedures defined in the previous chapter. To conclude, Chapter 10 provides a

preliminary evaluation of the optimizing compiler and Chapter 11 discusses thoughts on

future directions for this line of research.

5

2 Preliminaries

This chapter briefly defines preliminary concepts required to engage with the remainder of

the work (namely domination and the definition of reducible loops). This chapter also defines

notation for concepts where existing notation is insufficiently standardized.

2.1 Sequences

A sequence S is an ordered set of items denoted ⟨s1, s2, . . . , sn⟩. The empty sequence is

denoted ⟨⟩. We denote the extension of one sequence with the elements of another as

S1 ∪ S2 such that the resulting set has all elements of S1 followed by all elements of S2 in

their original order.

2.2 Multisets

A multiset M over a ground set S is defined as the mapping M : S → N where for s ∈ S

the number M(s) denotes the multiplicity of s in M . The root of a multiset, denoted

root(M), is defined as the set of elements with a non-zero multiplicity, {s ∈ S | M(s) > 0}.

The cardinality of a multiset, denoted |M |, is defined as the sum of its multiplicities,∑
M(s). Multiset membership is denoted by s ∈k M when M(s) = k or s ∈ M when

M(s) ≥ 1. A classic set S ′ may be interpreted as a multiset M over the ground set S ⊆ S ′

such that M(s) = 1 if s ∈ S ′ and M(s) = 0 otherwise for all s ∈ S.

If M1 and M2 are multisets over the same ground set S, then M1 ⊆M2 if M1(s) ≤M2(s)

for all s ∈ S. Their union, intersection, difference, and sum are defined as follows where the

symbol .− denotes truncated subtraction (bounded below by zero).

6

(M1 ∪M2)(s) = max(M1(s), M2(s))

(M1 ∩M2)(s) = min(M1(s), M2(s))

(M1 −M2)(s) =M1(s)
.−M2(s)

(M1 ⊎M2)(s) =M1(s) +M2(s)

If M is a multiset of the ground set S, then all of the elements from the set S ′ ⊆ S can

be removed from M by the following operation.

(M \ S ′)(s) =


0 s ∈ S ′

M(s) otherwise

The empty multiset in which all multiplicities are zero is denoted by ∅ when the ground

set over which the multiset is defined is unambiguous. {s⟨k⟩ | P (s, k)} defines the multiset

M where s ∈k M if the predicate P (s, k) is satisfied and s ̸∈ M otherwise. If the ⟨k⟩

subscript is omitted, then it is assumed that the multiplicities are transferred to the resulting

multiset whenever the ∈ or ∈k relationships are used in the predicate. For example, if

M = {1, 2, 3, 3, 4, 4, 4} then {2x | x ∈M,x > 2} = {6, 6, 8, 8, 8}.

For sets and multisets representing binary relations (such as edges in a graph), we use

dom(M) to mean the set of elements in the domain of the mapping and codom(M) to mean

the set of elements in the codomain of the mapping.

2.3 Labels

Let Lb be an infinite set of abstract block labels and let Lf be an infinite set of abstract

function labels. A single label is denoted ℓ. Basic blocks and functions are further defined

in Chapter 3. For now, it is sufficient to know that lab(b) ∈ Lb and lab(f) ∈ Lf denote

respectively the label associated with block b and function f , and target(b) denotes the

multiset of block labels that are referenced as the target of a branch originating from the

block b.

7

2.4 Control Flow Graph

A control flow graph G = (B, ℓ0) is a directed multigraph that encodes the branching

structure between a set of blocks B. Let blockG(ℓ) denote the block b ∈ B such that

lab(b) = ℓ and let Lb
B = {lab(b) | b ∈ B} denote the set of block labels in B. E(G) is a

multiset of edges over the ground set B × B such that (b1, b2) ∈k E(G) if and only if block

b1 contains exactly k references to the label ℓb2 . It is legal for a block to be adjacent to itself

(self-loops), or to be adjacent to another block multiple times (parallel edges). The block

entry(G) = blockG(ℓ0) is the designated root block from which all other blocks b ∈ B are

reachable. For a control flow graph to be well-formed, it must be the case that the labels of

all blocks in B are distinct, target(b) ⊆ Lb
B for each block b ∈ B, and ℓ0 ∈ Lb

B. The visual

conventions for control flow graphs are illustrated in Figure 2.1.

Let succG(b) = {b′ | (b, b′) ∈ E(G))} denote the set of blocks to which b refers in G and

let predG(b) = {b′ | (b′, b) ∈ E(G)} denote the set of blocks that refer to block b in G. Let

b1 ;G b2 denote the existence of a path from b1 to b2 in G and let b1 ̸;G b2 denote the

non-existence of such a path. Subscript qualifiers may be dropped when the context resolves

any ambiguity. If succG(b1) = {b2} and predG(b2) = {b1}, then (b1, b2) is a non-critical

edge. All other edges are critical edges.

For complexity analysis, the size of the block and edge sets are abbreviated as n = |B|

and m = |E(G)|. It is worth noting that m is O(n) for typical control flow graphs. The

extended sizes of a set of blocks B′ ⊆ B are defined as follows, which accounts for the number

8

t1 ← i < n
switch t1 c() false 7→ e()

t2 ← · · ·
switch t2 l(c1) false 7→ t()

· · · ← c1

t4 ← i+ 1
branch h(c2, t4)

t3 ← c1 + 1
branch l(t3)

h(c1, i)

c()

t()

l(c2)

e()

Figure 2.1: An example control flow graph containing a loop and a one-armed conditional.
Block content is presented in Section 3.1.

of edges connecting the set of blocks to the rest of the graph.

∥B′∥→ ≡ |B′|+
∑

(b1,b2)∈E

E((b1, b2))[b1 ∈ B′]

∥B′∥← ≡ |B′|+
∑

(b1,b2)∈E

E((b1, b2))[b2 ∈ B′]

∥B′∥↔ ≡ |B′|+
∑

(b1,b2)∈E

E((b1, b2))[b1 ∈ B′ ∨ b2 ∈ B′]

Let G⟨B′⟩ denote the subgraph of the control flow graph G = (B, ℓ0) induced by the

set of blocks B′ ⊆ B such that G⟨B′⟩ = (B′, {(b1, b2) ∈ E | b1, b2 ∈ B′}). Such induced

subgraphs are not necessarily control flow graphs as two blocks may be disconnected, targets

may refer outside of the subgraph, or there may be no designated root node.

2.4.1 Reducibility

A control flow graph is reducible if it does not contain a strongly connected component

with two or more predecessors. Equivalently, if the limit graph obtained by the repeated

application of the following transformations contains a single block, the original graph is

reducible [4]. Every graph produces a unique limit graph regardless of the order in which

the transformations are applied [35]. These operations are illustrated in Figure 2.2.

9

a

b c

d

a

b c, d

a

b c, d a, b c, d

Figure 2.2: The process of collapsing a reducible graph into its limit graph (incomplete).

(T1) Remove a self-loop edge (b, b) ∈ E.

(T2) Find two blocks a and b such that predG(b) = {a}. Replace both blocks with a

representative block c and replace all edges incident to either a or b with an edge

incident to c.

If a graph is irreducible, then the limit graph obtained by exhaustively applying the

transformations above contains more than one block. Such a representative block encodes

an irreducible region of the original graph and must have more than one predecessor. An

irreducible region can be transformed into an equivalent reducible region by applying the

following node splitting transformation.

(T3) Duplicate a block b with n > 1 predecessors and its outgoing edges so that each

predecessor references its own copy of b.

Once this transformation is applied, the second transformation is immediately applicable as

all of the duplicated nodes have a single predecessor. The repeated application of all three

transformations will always result in a trivial limit graph. If the reduction is reversed such

that the copies of blocks are left in place, the resulting graph is an equivalent but reducible

control flow graph. This operation is illustrated in Figure 2.3.

Transforming an irreducible graph into an equivalent reducible graph comes at the cost of

maintaining additional blocks (and, ultimately, code size) that can be exponential in theory.

The choice and order of blocks on which the node splitting transformation is performed is

10

a, b

c d

a, b

c d

c′

a, b

c d, c′

a, b, c d, c′

Figure 2.3: The process of collapsing an irreducible graph into its limit graph (incomplete).
Transformation (T3) is applied to block b so that transformations (T1) and (T2) can further
reduce the graph (incomplete).

significant and directly determines the number of duplicated blocks in the resulting graph.

Controlled node splitting helps mitigate the problem by choosing an optimal sequence of

block splits (exhaustively or with heuristics) [36,65]. Carter et al. [18] later showed that this

complexity is unavoidable in practice for some classes of graphs. Specifically, any reducible

graph equivalent to the complete graph on n nodes must have at least 2n−1 blocks. Fortu-

nately, the majority of programs written by humans are reducible, and the irreducible regions

that do occur are rarely pathological. Common structured programming constructs (e.g. se-

quence, if, for, while, do-while, switch, labeled and unlabeled break and continue)

create trivially reducible control flow graphs, and the use of arbitrary branching (e.g. goto)

creates an irreducible control flow graph only if the target of the branch is in a disjoint

control flow cycle (i.e. targeting the body of a loop).

2.4.2 Induced Trees

Let TG = (V,E ′) denote a rooted, connected tree induced by the labels of the control flow

graph G = (B, ℓ0) where V = Lb
B and ℓ0 is the root. The edge sets E(G) and E ′ have no fixed

relation; that is, it is not necessarily the case that (lab(b1), lab(b2)) ∈ E ′ if (b1, b2) ∈ E(G),

or vice versa. Examples of such trees and selections of E ′ are given in Section 2.4.3 and

Section 2.5.1.

11

Let b1 →TG
b2 denote the existence of a path from lab(b1) to lab(b2) in TG and, more

specifically, let b1
+→TG

b2 denote the existence of a non-empty path (where b1 ̸= b2). Let

b1 ̸→TG
b2 and b1

+

̸→T b2 denote the non-existence of such paths. Let TG⟨b⟩ denote the subtree

of TG rooted at label lab(b), pTG
(b) denote the block in G whose label is the parent of the

label lab(b) in TG, childTG
(b) denote the set of children of b in TG, ancestorTG

(b) denote the

set of blocks whose labels are the ancestors of the label lab(b) in TG, and ncaTG
({b1, . . . , bk})

denote the block in G whose label is the nearest common ancestor of the set of labels

{lab(bi) | b1, . . . , bk} in TG.

2.4.3 Depth-First Spanning Tree

A depth-first spanning tree DFSG is an induced tree of G generated by a depth-first

traversal starting from its entry block. Let Ord(DFSG) denote a total ordering of blocks

encoding DFSG such that b1 occurs before b2 if and only if lab(b1) occurs before lab(b2)

in a chosen pre-order traversal of DFSG. If multiple traversals are possible one can be

selected arbitrarily. We sometimes refer to a block in G by its pre-order rank; in particular,

b1 <Ord(TG) b2 means that b1 occurs before b2 in Ord(TG).

2.5 Domination

A block b1 dominates block b2 in the control flow graph G, denoted b1 ⪯G b2, if and only

if b1 occurs on all paths from entry(G) to b2 in G. Let domG(b) ⊇ {entry(G), b} denote

the set of dominators of block b in G. A block b1 strictly dominates b2 in G, denoted

b1 ≺G b2, if b1 ⪯G b2 and b1 ̸= b2. The immediate dominator of a block b ̸= entry(G) in G,

denoted idomG(b), is the unique block idomG(b) ∈ domG(b) that is dominated by each block

domG(b) \ {b} in G.

12

The dominance frontier of a block b in G is the set of blocks DFG(b) in which b

dominates a predecessor of b in G but not b itself, defined formally as follows.

DFG(b) = {b′ | b ⪯G p ∧ b ̸≺G b
′, p ∈ predG(b

′)}

Informally, the dominance frontier of a block b in G consists of all the blocks that are just

barely not dominated by b. For notational convenience, we extend this definition to sets of

blocks as follows,

DFG(B
′) =

∪
b∈B′

DFG(b)

which denotes the set of blocks that are just barely not dominated by all of the blocks in B′.

The iterated dominance frontier of a set of blocks in G, denoted DFG(B
′), is the fixed point

of the following relation.

DF 1
G(B

′) = DFG(B
′)

DF i
G(B

′) = DFG(B
′ ∪ DF i−1

G (B′))

DFG(B
′) =

∪
i

DF i
G(B

′)

2.5.1 Dominator Tree

The dominance relation of a control flow graph G is transitive and can be represented

compactly by a dominator tree DG. A dominator tree is an induced tree of a control flow

graph G = (B, ℓ0) in which the parent of each label ℓ ∈ Lb
B, except when ℓ ̸= ℓ0, is the label

of blockG(ℓ)’s immediate dominator. An example dominator tree is illustrated in Figure 2.4.

2.6 Loops

A natural loop is a single-entry, maximal strongly connected component of a control flow

graph containing one block that dominates all other blocks. Loops are defined abstractly

13

r

a

b d

g

c e

f

r

a

g

d

b

c

e

f

Figure 2.4: A control flow graph with its dominator tree. An edge (b1, b2) in the dominator
tree indicates that idom(b2) = b1.

as the tuple l = (ℓ, L,X), where ℓ ∈ L, L ⊂ Lb, X ⊂ Lb, and L ∩ X = ∅. The following

properties of the loop l are defined with respect to a control flow graph G = (B, ℓ0) such

that L ⊆ Lb
B and X ⊂ Lb

B.

The body of l, denoted bodyG(l), is the set of blocks {blockG(ℓ) | ℓ ∈ L}. The header

of l, denoted headerG(l), is the block blockG(ℓ) ∈ bodyG(l) that dominates all other blocks

in bodyG(l). We use lab(l) = ℓ to refer to the label of the loop’s header block. An exit of l

is a block b ̸∈ bodyG(l) such that predG(b) ∩ bodyG(l) ̸= ∅. The exits of l are denoted by the

set exitG(l) = {blockG(ℓ) | ℓ ∈ X}.

A backedge of G is an edge between blocks b1 and b2 such that b2 ≺G b1; every other edge

is a forward edge. The set of backedges of G are denoted by
←
E(G) and the set of forward

edges by
→
E(G). A latch of l is a block b ∈ bodyG(l) identified by the backedge (b, headerG(l)).

Let latchG(l) denote the set of latches of l and the unique latch of l when canonical form

(discussed in Section 4.3) is assumed. A preheader of l is a block b ̸∈ bodyG(l) such that

succG(b) = {headerG(l)} and predG(headerG(l)) = {b}. Each loop has at most one preheader

and is denoted by preheaderG(l), if it exists.

14

2.6.1 Loop Nesting

Let lc and lp be distinct loops of the same control flow graph G. If bodyG(lc) ⊂ bodyG(lp),

then loop lc is nested within loop lp. lc is referred to as the inner loop and lp is referred to as

the outer loop. If there does not exist a loop li such that bodyG(lc) ⊂ bodyG(li) ⊂ body(lp),

then lc is immediately nested in lp.

Lemma 2.6.1. If lc and lp are distinct loops in the control flow graph G, then the loops

are either disjoint (body(lc) ∩ body(lp) = ∅) or nested (body(lc) ⊂ body(lp)), without loss of

generality.

Proof. Let X = body(lc)∩ body(lp). Suppose X ̸= ∅, X ̸= body(lc), and X ̸= body(lp). Let p

be the unique path entry(G)→DG
x for some x ∈ X. As the headers of both loops dominate

all blocks in X, header(lc), header(lp) ∈ p. If header(lp) occurs first in p, then all blocks in lc

are dominated by header(lp) and X = body(lc). Symmetrically, if header(lc) occurs first in

p, then X = body(lp).

Lemma 2.6.2. If loop lc is nested within the loop lp in the control flow graph G, then

exit(lc) ∩ body(lp) ≠ ∅.

Proof. If exit(lc)∩body(lp) = ∅, then b ̸;G⟨body(lp)⟩ header(lp) for all b ∈ body(lc) and body(lp)

does not represent a strongly connected component of G.

2.6.2 Loop Nesting Forest

The loop nesting structure of a control flow graph G is transitive and can be represented

compactly by a loop nesting forest FG. A loop nesting forest is a forest of loops in which

the children of a loop l in G are the set of loops that are immediately nested in l. The roots

of the forest, denoted by root(F), are the outermost loops of G. An example loop nesting

forest is illustrated in Figure 2.5.

15

a

b

c

d

e

f

lb

lc

le

Figure 2.5: A control flow graph containing three loops (one nested) shown with its
loop nesting forest. In this example, the set of abstract loops are lb = (b, {b, c, d}, {e}),
lc = (c, {c, d}, {b}), and le = (e, {e, f}, ∅).

Let FG⟨l⟩ denote the connected subtree of the loop nesting forest FG rooted at loop l,

pFG
(l) denote the parent of a loop l in FG, childFG

(l) denote the set of immediate children of

l in FG, ancestorFG
(l) denote the set of ancestors of l in FG, and ncaFG

({l1, . . . , lk}) denote

the nearest common ancestor of a set of k > 0 loops in FG. Let loopFG
(b) denote the smallest

loop l ∈ FG such that b ∈ body(l). We adopt the convention that the phony loop l∅ is the

result of ncaFG
on a set of loops in disjoint trees of FG and the result of loopFG

(b) when b

does not occur in the body of any loop of G.

The depth of a loop l in a loop nesting forest FG, denoted depthFG
(l), is the length of

the unique path from a root in FG to l. By convention, the depth of the phony loop l∅ is -1.

We extend this definition to blocks, defined as depthFG
(b) = depthFG

(loopFG
(b)).

16

2.6.3 Loop Deconstruction

The loops and the loop nesting forest F of a control flow graph G can be deconstructed into

the triple (HF , LF , XF) defined as follows.

HF = {(lab(lc), lab(lp)) | lc, lp ∈ F ∧ pF (lc) = lp}

LF = {(lab(b), lab(h)) | l ∈ F ∧ headerG(l) = h ∧ loopG(b) = l}

XF = {(lab(b), lab(h)) | l ∈ F ∧ headerG(l) = h ∧ b ∈ exitG(l)}

The set HF represents the nesting relation of loops in F as pairs of block labels such that

(ℓc, ℓp) ∈ HF when the loop with the header label ℓc is immediately nested in the loop with

the header label ℓp. The set LF maps blocks to the inner-most loop in F that contains it.

Together, HF and LF represent the bodies of all loops in F . The set XF represents the exit

sets of loops in F such that (ℓb, ℓl) ∈ XF when the block with label ℓb exits the loop with

the header label ℓl.

The set of header labels are nested under the loop in H with header label ℓ, denoted

NH(ℓ), is the fixed point of the following relation.

N1
H(ℓ) ={ℓ}

N i
H(ℓ) =N

i−1
H (ℓ) ∪ {ℓc | (ℓc, ℓp) ∈ H ∧ ℓp ∈ N i−1

H (ℓ)}

NH(ℓ) =
∪
i

N i
H(ℓ)

A loop l with the header label ℓ can be reconstructed from a triple (H,L,X), denoted

l(H,L,X)(ℓ), as follows.

(ℓ, {ℓb | (ℓb, ℓl) ∈ L ∧ ℓl ∈ NH(ℓ)}, {ℓb | (ℓb, ℓ) ∈ X})

Given the triple (H,L,X) and the set of loops L reconstructed from it, a loop nesting

relation F can be reconstructed by making l(H,L,X)(ℓc) a child of l(H,L,X)(ℓp) in F when

(ℓc, ℓp) ∈ H.

17

a

b

d

c

e

Figure 2.6: An irreducible graph.

2.6.4 Identification of Reducible Loops

The classic algorithm for finding loops is Tarjan’s interval finding algorithm [62] that runs

in linear time. The identification algorithm takes advantage of the fact that the header

necessarily dominates all blocks in single-entry loops and is therefore restricted to reducible

graphs. A backedge (l, h) identifies the header (and a latch) of a loop. The loop body can be

determined by traversing the control flow graph in reverse starting from l before reaching h.

The loop nesting structure can be determined by collapsing an identified loop into a single

representative node until no backedges remain. Inner loops are collapsed first by following a

post-order traversal of the dominator tree.

2.6.5 Identification of Irreducible Loops

In an irreducible control flow graph, it may not be the case that backedges identify a single

entry connected component. Reducible loops can be generalized to irreducible loops that

allow multiple entries. Unlike natural loops, there is no guaranteed domination property

with respect to the set of loop entries. However, irreducible loops are generally defined in

such a way that they, like reducible loops, are either properly nested or completely disjoint.

Thus a loop nesting forest is still a valid encoding of both reducible and irreducible loops.

Steensgaard, Sreedhar et al., and Havlak each provide an algorithm for identifying loop

bodies and loop nesting structure for arbitrary graphs [34,59,60]. Each algorithm identifies a

18

different set of loops. For the irreducible graph shown in Figure 2.6, Steensgaard’s algorithm

identifies the loops {c, e} and {b, c, d, e}; Sreedhar et al.’s algorithm identifies only the loop

{b, c, d, e}; and Havlak’s algorithm identifies the loops {d, e}, {c, d, e}, and {b, c, d, e}. All

three algorithms take O(n2) time, but modifications by Ramalingam reduce the bound for

Sreedhar et al. and Havlak’s algorithm to be nearly-linear [54]. Sreedhar et al.’s algorithm

requires a dominator tree being built in advance.

19

3 Internal Representation

In this chapter we formally define the Waddle internal representation. Section 3.1 dis-

cusses the syntax of programs, functions, blocks, instructions, values, and types. Section 3.2

presents an operational semantics for the internal representation. Section 3.3 presents a

typesystem to ensure that a well-typed program can be evaluated without ‘getting stuck’.

There have been efforts to formalize the LLVM internal representation, most notably

the Vellvm project [67, 68]. Unfortunately, the LLVM internal representation has non-

deterministic semantics, concerns itself with the shape of its data, and tracks allocation

regions (differentiating stack and heap allocations). These features are unnecessary for trans-

formations that focus their concern on control flow.

The Waddle internal representation, while similar to the LLVM internal representation,

is designed to be a more suitable kernel language which can be later extended for a richer

set of features for different target concrete internal representations. Languages such as Swift

and Rust are powered by LLVM, but define their own intermediate representations known

as SIL [31] and MIR [46], respectively. These internal representations contain additional

high-level semantic information about the source program. The Swift intermediate language

is used for optimizations relating to retain/release optimizations for its reference counting

garbage collection as well as dynamic method de-virtualization and closure inlining. The Rust

mid-level IR is used to encode more information about the lifetime of values. A goal for the

design of the Waddle IR is to serve as the design basis for such an internal representation so

that the transformations described later in this work can be applied with minimal extension.

20

3.1 Syntax

This section outlines the basic concepts of the internal representation along with a formal

syntax. This syntax is very similar to the textual representation of the internal representation

as used by the proof-of-concept implementation.

3.1.1 Blocks, Functions, and Programs

A block, defined as b = (ℓ, ⟨ri : ti⟩, {rj : tjc}, ⟨I1, . . . , Ik, T ⟩), represents a maximal fragment

of a program absent of control flow (specifically branches). A block tuple contains, in order,

its label, a possibly empty ordered sequence of block parameters, a set of implicit block

parameters, and an instruction stream. The instruction stream consists of a possibly empty

ordered sequence of instructions followed by exactly one terminator. A terminator may

contain multiple block references that denote the blocks in which evaluation may continue.

Block components are defined in Section 3.1.3. Given a block b, its label, block parameters,

implicit parameters, instruction stream, instructions, and terminator may be referenced as

lab(b), param(b), implicit(b), stream(b), inst(b), and term(b), respectively.

A function, defined as f = (ℓ, B, ℓ0, t), represents an invocable fragment of a program

that includes control flow. The function extends the control flow graph G = (B, ℓ0) with a

function label ℓ ∈ Lf and a return type annotation t. Let lab(f) denote the label of function

f , and let ret(f) denote the return type annotation of f . When convenient, we may use f

in place of G as a subscript qualifier for notation defined in Chapter 2 and let E(f) denote

the mutliset of edges for the control flow graph of the function f . A function’s block set and

entry block may be referenced as body(f) and entry(f), respectively. Let blockf (ℓ) denote the

block b ∈ body(f) such that lab(b) = ℓ. Let exit(f) denote the set of blocks in body(f) that

have no successors (blocks containing a return terminator) and let loop(f) denote the roots

21

of the function’s loop nesting forest. The function’s annotated return type t, together with

the types of the entry block’s parameters, form the type of the function, denoted f : (ti)→ t.

Given a block b ∈ body(f), b can be referenced by the path ⟨f, b⟩ in order to distinguish it

from an identical block occurring in another function.

An intrinsic function, defined as f̂ = (ℓ, (ti) → t), represents an opaque invocable

object that is not explicitly defined by the program. Intrinsics provide an escape hatch from

the internal representation, allowing interaction with external systems (e.g. reading from or

writing to a device) and some degree of non-determinism (e.g. time and random number

generator) that is not otherwise defined by these semantics. Let lab(f̂) denote the label ℓ of

the intrinsic f̂ and let f̂ : (ti)→ t denote the type annotation of f̂ .

Let F̂ denote the finite set of all intrinsincs and let Lf̂ = {lab(f̂) | f̂ ∈ F̂} denote the set

of all intrinsic labels. The set of intrinsics are considered to be built-in to the language and

are available to all defined programs with no difference in labels, types, or semantics.

A program p is a set of functions. To prevent ambiguity at function callsites, it is

assumed that no two functions in p share the same label and no label of a function in

p occurs in Lf̂ . Let funcp(ℓ) denote the function f ∈ p such that lab(f) = ℓ and let

Lf
p = {lab(f) | f ∈ p} denote the set of function labels in p. It is also assumed that every use

of a function label in p occurs in Lf
p , otherwise control may be transferred to an unknown

function external to the program. Given a function f ∈ p, f can be referenced by the path

⟨p, f⟩ in order to distinguish it from an identical function occurring in another program.

3.1.2 Values and Expressions

A value is an item from the infinite set V composed of a set of integers bounded in the

range [−(2k−1), 2k−1) for some choice of k, the set of references to functions defined within

the program, references to intrinsics, and the constants true, false, and unit. A register

22

cv ::= constant values:
| true | false booleans
| unit unit
| n integers

e ::= expressions:
| cv constant value
| r register

v ::= values:
| cv constant value
| ref f | ref f̂ function reference

t ::= types:
| bool booleans
| unit unit
| int integers
| (t)→ t function type

Figure 3.1: Syntax of values, expressions, and types.

is a virtual, symbolic storage location for a value chosen from an infinite set R. A register is

associated with a value that can change over time. A register cannot be referenced until it

has been associated with a value. A special void register, denoted by the symbol ‘ · ’, can be

used for assignment but cannot be referenced. This register is used to absorb meaningless

values so that an instruction can be executed for effect rather than for value. Together, the

set of values and registers form the set of expressions. The syntax of expressions and the

expression types is illustrated in Figure 3.1.

3.1.3 Block Components

The components of a block consist of block parameters, instructions, terminators, and block

references. A component c in block b can be referenced by the path ⟨b, c⟩ so that equivalent

components in different blocks are distinguishable. A component may be referenced without

the path if the block in which it occurs is unambiguous. Let c1 <b c2 denote the fact

that component c1 occurs before component c2 in block b. A block’s parameters occur

first, followed by instructions, then followed by the terminator. All block parameters occur

simultaneously, as does the terminator and its references.

The definition of a register r with respect to a function f is a component in f that

23

associates a (possibly unchanged) value with r. The use of a register r with respect to a

function f is a component in f that reads a value with r. Explicit block parameters and

instructions of the form r ← v compose the set of definitions; implicit block parameters,

instructions, terminators, and block references compose the set of uses. Let reg(u) denote

the set of registers used by a use u (e.g. reg(r1 ← add(r2, r3)) = {r2, r3}). The uses and

definitions of a register r in function f are denoted respectively by the sets usef (r) and

deff (r). A unique definition of r is also denoted by deff (r) when static single assignment form

(discussed in Section 4.1) is assumed. Let useb(r) and defb(r) denote, respectively, the set of

uses and definitions of register r in block b. Let use(b) and def(b) denote, respectively, all uses

and definitions occurring in block b. Subscript qualifiers may be dropped when the context

resolves any ambiguity. Let typeoff (d) denote the type of the definition d. This definition

will either resolve immediately by an operation that has a fixed type (e.g. arithmetic and

function call operations), or will require determining the type of another defined register

(e.g. a register-to-register copy).

3.1.3.1 Block Parameters and Implicit Parameters

A block parameter of a block b is a typed register of the form (r : t), where t is the expected

type of the value associated with r. The value of r is resolved once control enters the block

during evaluation. Graphically, we will omit the type annotation of parameters for clarity

when they are not necessary. Given a set of typed registers T and a set of registers R, we

denote {(r : t) ∈ T | r ̸∈ R} as T ⊖R.

An implicit parameter of a block b is also a typed register of the form (r : t). The set

of implicit parameters for a block b are the set of registers that must be defined before b

can be evaluated. Intuitively, this set is composed by the registers for which a use occurs

without a preceding definition in the same block.

24

Implicit parameters are defined solely to aid type checking, discussed in Section 3.3.

While the domain of the implicit parameters can be inferred syntactically, the proper type

annotations for these registers cannot be as easily inferred without type parameters. The

types must be supplied externally as part of the program’s syntax. Graphically, we will omit

implicit parameters for clarity when they are not necessary.

Definition 3.1.1 (Well-Formed Implicit Parameters). A block b’s implicit parameters are

well-formed when r ∈ dom(implicit(b)) if and only if there exists a use u ∈ useb(r) that

occurs in b such that u <b d for every d ∈ defb(r).

A nonlocal implicit parameter of a block b is also a typed register of the form (r : t).

The set of nonlocal implicit parameters of a block b, denoted nonlocalf (b), is the set of

registers that must be defined before b and its successors (recursively), with respect to a

function f extending the control flow graph G, can be evaluated. The set of nonlocal implicit

parameters can be calculated by the following without placing an additional annotation

burden on the user.

nonlocal ′f (b) = implicit(b)
∪

s∈succf (b)

{(r : t) ∈ nonlocal ′f (s) | r ̸∈ def(b)}

nonlocalf (b) = {(r : t) | t is chosen arbitrarily from {t′ | (r : t′) ∈ nonlocal ′f (b)}}

The definition of nonlocalf (b) chooses pairs from nonlocal ′f (b) such that every register is

associated with a unique type. Annotation inconsistencies of this kind will fail during type

checking as the same register will be used in multiple contexts requiring different types, all

but one of which must fail.

This formulation is intuitive: the set nonlocal implicit parameters for a block b are b’s

implicit parameters and the nonlocal implicit parameters of b’s successors that are not defined

by b. If (r : t) ∈ nonlocalf (b), then there must be a block b′ containing a use of r and some

path b ;G b
′ on which no definition of r occurs.

25

r3 ← r1 + r2
branch d()

branch c(3)
r1 ← 5

branch c(4)

r4 ← r3 + r2
return r4

c(r2 : int)(r1 : int)

a()() b()()

d()(r2 : int, r3 : int)

Figure 3.2: A graph annotated with implicit parameters (the second set of parameters).

a b c d
Local ∅ ∅ {r1 : int} {r2 : int, r3 : int}

Nonlocal {r1 : int} ∅ {r1 : int} {r2 : int, r3 : int}

Figure 3.3: Implicit parameters for the graph in Figure 3.2.

Figure 3.2 illustrates (annotated) implicit parameters on a relevant portion of a graph.

In particular, block c has an implicit parameter for register r1 and block d has an implicit

parameters for registers r2 and r3. Figure 3.3 gives the calculated nonlocal implicit param-

eters. Of note, the requirement of register r3 in block d is fulfilled by the assignment in

block c, so the requirement does not flow any further along that path. Similarly, block r1 is

assigned by block b, that fulfills the requirement for the path to block c (but not the path

from block a).

3.1.3.2 Instructions

An instruction contains an operation over k > 0 expressions. An operation yields a value

that may then be assigned to a target register. If an operation does not yield a meaningful

value or if the value resulting from an operation is unused by the program, the void register

may be used as a target register. The syntax of instructions is illustrated in Figure 3.4.

Instruction operations include assignment (move), memory operations (load and store),

and function reference and invocation (addr and call), as well as a standard set of logical,

26

I ::= r ← O instruction
O ::= operations:

| move(e) assignment
| load«t»(e) read memory
| store(e, e) write memory
| addr(ℓ) ℓ ∈ Lf ∪ Lf̂ function address
| call(e, e) function call
| ⊕(e) ⊕ ∈ {pos, neg, not} negation
| ⊕(e, e) ⊕ ∈ {add, sub, mul, div} arithmetic
| ⊕(e, e) ⊕ ∈ {eq, ne} equality
| ⊕(e, e) ⊕ ∈ {le, lt, ge, gt} comparison
| ⊕(e, e) ⊕ ∈ {and, or} logical

Figure 3.4: The syntax of instructions.

arithmetic, and comparison operations. The move operation simply yields its evaluated

argument without modification. The load operation evaluates its argument as an address in

memory and yields the content of the memory cell at that address as a value of type t or fails

with a memory error. Symmetrically, the store operation evaluates its first argument as an

address in memory and evaluates its second argument as a value to place in the memory cell

at that address. The addr operation yields a function reference from the label of a function

that is defined in the same program. The call operation evaluates its first argument as a

function reference, evaluates all remaining arguments as function arguments, then yields the

return value of the function. The remaining operation are abstracted by the operator ⊕.

Each operator has a rigid type, denoted ⊕ : t→ t′, where t is the type of its arguments and

t′ is the type of its result. Graphically, we will represent the negation, arithmetic, equality,

comparison, and logical operation using infix notation (e.g. r1 ← r2 × r3) when it increases

readability.

27

T ::= terminators:
| switch e cv 7→ ref ref switch
| return e return

ref ::= ℓ(e) ℓ ∈ Lb block reference

Figure 3.5: The syntax of terminators.

3.1.3.3 Terminators

A terminator determines the flow of control between basic blocks. A terminator may

contain zero or more block references of the form ℓ(ei) where ℓ ∈ Lb refers to the label of

the target block b = blockG(ℓ), and the value of the expression ei becomes the value of the

i-th parameter of b when control is transferred to b. The block references of a block b are

denoted by the set ref(b). The multiset of labels in all block references of b are denoted by

the set target(b). The syntax of terminators is illustrated in Figure 3.5.

The switch terminator transfers control conditionally to one of several blocks, depending

on the runtime value of e. If the terminator contains a switch case vi 7→ refi such that

evaluated value of e equals vi, then control is transferred to the block referred to by refi.

To ensure deterministic evaluation, the first switch case to occur lexically is chosen when

multiple switch cases match. Switch cases with a value of unit are considered dead and are

never matched during evaluation. Otherwise, control is transferred to the block referred to

by the default reference. Control can be transferred to a block unconditionally by specifying

only a default branch target. Graphically, we abbreviate unconditional branches by the

following shorthand.

branch ref ≡ switch unit ref

The return terminator exits the current function, yielding the evaluated value of e to

the caller.

28

3.2 Semantics

An internal representation is useless if it has no defined operational meaning. Section 3.2.1

details function cloning (which will later be shown necessary for evaluation). Section 3.2.2

and Section 3.2.3 defines a set of environments and a small-step operational semantics that

are used to evaluate a function.

3.2.1 Function Cloning

First, we detail the method of creating an isomorphic clone of a function. As we discuss

in Section 3.2.3, this will be necessary to distinguish the same register between recursive

invocations of the same function. A clone f ′ of function f is a duplication of f ’s control

flow graph where every occurrence of each register r is replaced by some fresh register r′ (for

all r). The label of the function, the entry block, and block within the function are stable,

as is the function’s return type annotation.

Let C(f) be the (infinite) set of functions that are isomorphic clones of f . By convention,

f ∈ C(f) and we assume for every f ′, f ′′ ∈ C(f), f ′ and f ′′ have strictly disjoint registers.

Given a block b ∈ body(f), let C(b) = {blockf ′(lab(b)) | f ′ ∈ C(f)} be the (infinite) set of

blocks symetric to b in all clones of f . For notational convenience, we extend this definition

to sets of blocks as follows.

C(B) =
∪
b∈B

C(b)

3.2.2 Environments

In this section, we define operational semantic rules that evaluate an instruction stream of

a function within a program. The terms and environments over which evaluation occurs are

illustrated in Figure 3.6.

29

s ::= stream:
| ϵ empty
| I, s instructions
| T, ŝ terminator

γ ::= register environment:
| ∅ empty
| γ[r 7→ v] non-empty

ψ ::= effect:
| halt(v) termination
| halt(ex(err)) abnormal termination
| f̂(e) intrinsic call

ŝ ::= return context:
| ϵ top-level
| ⟨f, b, r, s⟩ caller stream

µ ::= memory environment:
| ∅ empty
| µ[n 7→ v] non-empty

Ψ ::= effects list:
| ϵ empty
| Ψ, ψ non-empty

Figure 3.6: Syntax of terms, environments, nondeterminsm state, and effects.

A stream s is a recursively constructed sequence of instructions that ends in a terminator

and a return context. A return context quadruple ⟨f, b, r, s⟩ represents a frame in the call

stack such that f is the calling function, b is the block that originated the call, r is the target

register for the result of the called function, and s is the remaining unevaluated stream of

f . The empty return context ϵ denotes execution of a top-level function. Streams can be

nested arbitrarily deeply.

The concatenation of a stream and a return context denoted s, ŝ replaces the return

context of s with ŝ. The stream of block b can be represented as an evaluation term with

the empty return context, as follows.

⟨I1, . . . , In, T ⟩ ≡ I1, . . . , In, T, ϵ

The register environment, denoted γ, is a store that partially maps registers to values:

γ : R ⇀ V . We define evaluation of expressions with respect to a register environment as

follows:

γ(e) =


v if e = v ∈ V

v if e = r ∈ R \ {·} ∧ (r 7→ v) ∈ γ.

30

Assignment to a register with respect to a register environment γ is denoted γ[r 7→ v], which

associates the register r with the value v. This destroys any previous type association for

the register r.

The memory environment, denoted µ, is a store that maps an infinite address space

to bits: µ : N → {0, 1}. The empty memory environment ∅ maps all addresses to zero.

The memory environment does not contain holes that are unaddressable. While the memory

environment is infinite, only the first 2k−1−1 bits are addressable when the program’s integer

values are encoded with k bits.

Every value v ∈ V of type t can be described by a bitstring of length w that is determined

by the width of the values in t. This value, denoted by width(t), is defined with respect to

a particular program, but can always be artificially increased in order to match the widths

of another program. Notably, if |func(p)| = k, then the width of function types with respect

to program p must be at least ⌈log2(k)⌉.

A bitstring of length w occupying addresses [n, n + w) in the memory environment µ is

denoted µ(n,w). It is possible but not guaranteed that a bitstring of length w is interpretable

as a value of type t where width(t) = w. Mutation of the memory environment is denoted

µ[n 7→ v], which overwrites contents of the memory environment at addresses [n, n+width(t))

with the bitstring interpretation of value v with type t.

The nondeterminism state, denoted ν, is an unbounded, opaque stream of bits that

can be consumed by the invocation of an intrinsic. This extra evaluation parameter allows

total determinism over the set of functions and intrinsics while still allowing a way to model

non-deterministic evaluation.

An effects list, denoted Ψ, is an ordered sequence of observable operations made during

evaluation. An effect is created for the invocation of an intrinsic, denoted f̂(vi) where vi

is a value passed to the intrinsic, and for the final result of a program, denoted as either

31

halt(v) or halt(ex(err)). A value v is produced when a program terminates successfully.

An abnormal exit value ex(ex) is produced in a well-defined program (such that evaluation

rules do not “get stuck”) when a necessary runtime condition does not hold (e.g. a zero

denominator or a failed bitstring interpretation). A program that terminates will produce

exactly one halt effect at the tail of the evaluation’s effect list. A non-terminating program

will produce no such effect.

3.2.3 Evaluation

The operational semantics is described in terms of a small-step evaluation and is illustrated

in Figure 3.7, Figure 3.8, Figure 3.9, Figure 3.10, and Figure 3.11. Term evaluation is

defined by a relation of the form (⟨p, f, b⟩ | γ | µ | ν | Ψ; s)→ (⟨p, f ′, b′⟩ | ν ′ | γ′ | µ′ | Ψ′; s′),

where ⟨p, f, b⟩ is the path to the block currently being evaluated, γ and µ are the current

register and memory environments, ν is the current nondeterminism state, and Ψ is the

sequence of effects that have already been produced. In the resulting tuple, ⟨p, f ′, b′⟩ is the

path to the block to which control has transferred, γ′ and µ′ are the register and memory

environments that were (perhaps) mutated by the last evaluated operation, ν ′ is the resulting

nondeterminism state, Ψ′ is a list of effects (perhaps) with a fresh tail element, and s′ is the

sequence of instructions remaining in the evaluation. A reference to the block in which an

instruction is being evaluated is not necessary for operational semantics. The rules presented

in this chapter do not read the values of b or b′ in a meaningful way. However, its presence

greatly aids in the proofs of semantic preservation and are thus included.

Figure 3.7 illustrates evaluation of streams beginning with an instruction (excluding

call) when evaluation does not produce an abnormal exit. Evaluating an instruction stream

of the form (r ← O, s) first evaluates the operation in the head of the list that may modify

the memory environment, associates the result value with the register r, then recursively

32

E-Inst
(p | γ | µ; O)→ (µ′; v)

(⟨p, f, b⟩ | γ | µ | ν | Ψ; r ← O, s)→ (⟨p, f, b⟩ | γ[r 7→ v] | ν | µ′ | Ψ; s)

E-Operator
⊕ ̸= div ∨ γ(e2) ̸= 0 [[⊕(γ(ei))]] = v

(p | γ | µ; ⊕ (ei))→ (µ; v)

E-Move
γ(e) = v

(p | γ | µ; move(e))→ (µ; v)

E-Addr
funcp(ℓ) = f

(p | γ | µ; addr(ℓ))→ (µ; ref f)

E-Addr-Intrinsic
lab(f̂) = ℓ

(p | γ | µ; addr(ℓ))→ (µ; ref f̂)

E-Load
γ(e) = n

width(t) = w µ(n,w) = v as t

(p | γ | µ; load«t»(e))→ (µ; v)

E-Store
γ(e1) = n γ(e2) = v n ≥ 0

(p | γ | µ; store(e1, e2))→ (µ[n 7→ v]; unit)

Figure 3.7: Evaluation rules for instructions excluding call.

evaluates the tail of the stream. Assignment and sequencing is implicit in rule E-Inst,

which evaluates the operation as an independent step.

The remaining rules in Figure 3.7 use a relation of the form (p | γ | µ;O) → (µ′; v),

where µ′ is the state of memory after evaluating O, and v is the resulting value. Operations

themselves may read the register environment but do not alter it. These rules should be

unsurprising. Rule E-Addr and rule E-Addr-Intrinsic yields a function reference from

a function label and an intrinsic label, respectively. Rule E-Load reads w bits from the

memory environment starting at address n and yields the loaded bitstring interpreted as

type t. Rule E-Store ensures that the address n is a valid address before modifying the

33

E-Div-Abnormal
γ(e2) = 0

(⟨p, f, b⟩ | γ | µ | ν | Ψ; r ← div(e1, e2), s)→ (⟨p, f, b⟩ | γ | µ | ν | Ψ, halt(ex(math err)); ϵ)

E-Load-Abnormal
γ(e) = n width(t) = w n < 0 ∨ µ(n,w) is not interpretable as t

(⟨p, f, b⟩ | γ | ν | µ | Ψ; r ← load«t»(e), s)→ (⟨p, f, b⟩ | γ | µ | ν | Ψ, halt(ex(mem err)); ϵ)

E-Store-Abnormal
γ(e1) = n n < 0

(⟨p, f, b⟩ | γ | µ | ν | Ψ; r ← store(e1, e2), s)→ (⟨p, f, b⟩ | γ | µ | ν | Ψ, halt(ex(mem err)); ϵ)

Figure 3.8: Evaluation rules for instructions evaluating abnormally.

memory environment and yields the value unit as the store instruction is intended for side-

effect. The operations abstracted by ⊕ are evaluated by rule E-Operator. This rule uses

safe evaluation notation [[⊕(e)]] that is expected to return a value when the correct number

and types of arguments are supplied. To ensure this is the case, rule E-Operator ensures

that the denominator value is non-zero when the operator is division (the only operator that

can fail). Other arithmetic operations are assumed to overflow deterministically if the result

cannot be encoded in the program’s integer range.

Figure 3.8 illustrates operator rules resulting in abnormal termination. Rule E-Div-

Abnormal is applied when the denominator of a division operation evaluates to zero. Rule

E-Store-Abnormal is applied when the target address n is not a valid address. Similarly,

E-Load-Abnormal is applied when either the base address n is not a valid address or the

bitstring loaded from memory cannot be interpreted as a value of type t. All three rules

terminate evaluation immediately by producing an abnormal exit value.

Figure 3.9 illustrates rules for invoking intrinsics. The invocation of an intrinsic f̂ takes

as input a memory environment µ, a nondeterminism state ν, and a sequence of values.

34

E-Intrinsic
γ(e0) = ref f̂ ∀i · γ(ei) = vi f̂(µ, ν, vi) = (µ′, ν ′, v)

(⟨p, f, b⟩ | γ | µ | ν | Ψ; r ← call(e0, ei), s)→ (⟨p, f, b⟩ | γ[r 7→ v] | µ′ | ν ′ | (Ψ, f̂(vi)); s)

E-Intrinsic-Abnormal
γ(e0) = ref f̂ ∀i · γ(ei) = vi f̂(µ, ν, vi) = ex(err)

(⟨p, f, b⟩ | γ | µ | ν | Ψ; r ← call(e0, ei), s)→ (⟨p, f, b⟩ | γ | µ | ν | (Ψ, f̂(vi), halt(ex(err))); ϵ)

Figure 3.9: Evaluation rules for the invocation of an intrinsic.

On success, the invocation produces a triple (µ′, ν ′, v) consisting of a modified nondetermin-

ism state, a modified memory environment, and a single value. On failure, the invocation

produces an abnormal exit value on invocation failure. Any attempt to invoke an intrinsic

function adds an effect to the tail of the resulting effect list. For ease of proving equiva-

lent semantics after transformation, we restrict the behavior of intrinsics when operating on

function type values. If values ref f and ref f ′ reduce to the same bit pattern (with respect

to any program), then this value may not meaningfully influence the intrinsic’s output.

Figure 3.10 illustrates rules that dictate control flow between blocks of the same func-

tion. The auxiliary rule E-Ref partially evaluates a block reference using a relation of the

form (f | γ; ref)→ (b | γ′; s), where f is a function containing possible target blocks, s is the

stream of the block referenced by ref, b is the target block, and γ′ is the register environ-

ment γ modified such that each target block parameter is associated with the corresponding

argument in the block reference.

Rule E-Switch replaces the head of the stream with the stream of a target block chosen

dynamically via rule E-Case or rule E-Case-Default. This leaves the return context

unchanged as evaluation has not moved out of the current function, but does change the

block currently being evaluated. If the evaluated switch expression matches some vi, then

35

E-Switch
(γ(e); cvi 7→ refi refd)→ ref (f | γ; ref)→ (b′ | γ′; s′)

(⟨p, f, b⟩ | γ | µ | ν | Ψ; switch e cvi 7→ refi refd, ŝ)→ (⟨p, f, b′⟩ | γ′ | µ | ν | Ψ; s′, ŝ)

E-Case
cvi = v ∧ ∀j < i · cvj ̸= v ∨ cvj = unit

(v; cvi 7→ refi refd)→ refi

E-Case-Default
∀i · cvi ̸= v ∨ v = unit

(v; cvi 7→ refi refd)→ refd

E-Ref
blockf (ℓ) = b stream(b) = s ∀i · γ(ei) = vi dom(param(b)) = ⟨ri⟩

(f | γ; ℓ(ei))→ (b | γ[ri 7→ vi]; s)

Figure 3.10: Evaluation rules for the switch terminator.

the associated block reference is used. Otherwise, the default block reference is used.

Figure 3.11 illustrates rules that dictate inter-procedural control flow. Rule E-Call

determines the target function by address and replaces the head of the stream with the

stream of the target function’s entry block. The remainder of the current stream is stored

in a new return context object along with the target register r, both of which are needed by

the evaluation of the call function’s return terminator.

This rule contains the additional obligation of ensuring that b is the entry block of the

fresh clone of the target function. Specifically, the clone must be minimally fresh with

respect to this evaluation. To illustrate why this is necessary, consider the function double

with parameters (r1 : int) and an entry block stream equivalent to (r2 ← r1+r1, return r2).

Now, suppose we evaluate the following stream with the register environment [r2 7→ 12] and

the empty memory environment.

r1 ← addr(double), r3 ← call(r1, r2), r3 ← r3 − r2, return r3

36

E-Call
γ(e0) = ref f ′

f ′′ ∈ C(f ′) entry(f ′′) = b′ lab(b′) = ℓ (f | γ; ℓ(ei))→ (b′ | γ′; s′)

(⟨p, f, b⟩ | γ | µ | ν; r ← call(e0, ei), s)→ (⟨p, f ′′, b′⟩ | γ′ | µ | ν; s′, ⟨f, b, r, s⟩)

E-Return
γ(e) = v

(⟨p, f, b⟩ | γ | µ | ν | Ψ; return e, ⟨f ′, b′, r, s⟩)→ (⟨p, f ′, b′⟩ | γ[r 7→ v] | µ | ν | Ψ; s)

E-Return-Last
γ(e) = v

(⟨p, f, b⟩ | γ | µ | ν | Ψ; return e, ϵ)→ (⟨p, f, b⟩ | γ | µ | ν | Ψ, halt(v); ϵ)

Figure 3.11: Evaluation rules for the call instruction and return terminator.

If we do not rename the registers in double, then evaluation reduces to the value 0 when we

expect the value 12. This is due to the evaluation of double overwriting the result of r2, which

is still referenced by the remaining stream of the calling function. To resolve this issue, we

ensure that each function invocation operates in an independent register space. This must

be done at evaluation time in order to resolve the issue when recursive function invocations

may be present.

Rule E-Return is the dual of the call instruction and uses the return context ⟨f ′, b′, r, s⟩

constructed by the immediate caller. This sequence reduces to the caller’s remaining instruc-

tion stream and modifies the register environment to associate the register r with the return

value. Rule E-Return-Last is applied when no caller exists and is the only rule that

produces a terminal value.

Finally, we provide a means of entry into evaluation of a program given a chosen start

function f ∈ p. This rule is illustrated in Figure 3.12. Rule E-Entry simply converts a

37

E-Entry
f ∈ p entry(f) = b lab(b) = ℓ (f | γ; ℓ(vi))→ (b | γ′; s′)

(p | γ | µ | ν | Ψ; f(vi))→ (⟨p, f, b⟩ | γ′ | µ | ν | Ψ; s′)

Figure 3.12: Evaluation rule for invoking a program function externally.

Γ ::= ∅ | Γ, (r : t) register environment typing

Figure 3.13: Typing environment.

function object and a list of positional arguments into the correct register context and stream

necessary to begin evaluation. Such a rule allows the invocation of a function f(e1, e2, e3)

and invocation of the same function after a transformation, f ′(e1, e2, e3), to begin evaluation

in a syntactically similar way. This allows us to elide the mapping of the entry register

context in the case when the entry block parameters of f and f ′ have differing names.

3.3 Type System

In this section, we detail a type system over the syntax described earlier in the chapter. The

register environment typing Γ, given in Figure 3.13, tracks the types of values associated

with registers as an ordered sequence of pairs (r : t), signifying that register r contains a value

of type t. Re-binding the type of a register makes the previous type inaccessible. Typing

rules for expressions are illustrated in Figure 3.14. The content of memory is not tracked

statically, therefore no memory environment typing exists.

Typing is attacked from two fronts. First, we type instruction streams until we reach a

terminator. These streams may be partial. That is, a result from performing a sequence of

reductions starting from a block’s initial instruction stream. At this point, we only ensure

38

T-Bool
v ∈ {true, false}

Γ ⊢ v : bool

T-Unit

Γ ⊢ unit : unit

T-Int

Γ ⊢ n : int

T-Ref
f : (ti)→ t

Γ ⊢ ref f : (ti)→ t

T-Ref-Intrinsic
f̂ : (ti)→ t

Γ ⊢ ref f̂ : (ti)→ t

T-Reg
r ̸= · (r : t) ∈ Γ

Γ ⊢ r : t

Figure 3.14: Typing judgments for expressions.

that the terminator is well-typed with respect to the declared types of the target block. The

typing judgments for a stream take the form Γ | t ⊢ s, where Γ is the register environment

typing and t is the expected return type of the stream up to a terminator. It is important

to note that type checking the stream does not follow block references, as doing so would

essentially evaluate the program. Second, we type each block independently to ensure that

the declared types match the block’s stream.

Typing Streams Figure 3.15 illustrates rules for typing a stream that begins with an

instruction. Rule T-Inst types a stream of the form (r ← O, s) by determining the result

type t of the operator O, then typing the remaining stream with t bound to r in the register

environment typing. The remaining rules in Figure 3.15 type operations. Operations may

be side-effecting but do not modify the register environment, therefore they cannot modify

the register environment typing.

Figure 3.16 illustrates rules for typing a stream that consists of only a terminator.

Rule T-Term types a stream of the form (T, ŝ) by ensuring that both the terminator T and

the return context ŝ are well-typed. Terminators are typed with respect to a register envi-

ronment typing and the declared return type t of the function. Rule T-Switch ensures that

the switch expression is well-typed and all block references are well-typed. Rule T-Return

39

T-Inst
(p f | Γ) ⊢ O : t′ (p f | Γ, (r : t′)) ⊢ s

(p f | Γ) ⊢ r ← O, s

T-Move
Γ ⊢ e : t

(p f | Γ) ⊢ move(e) : t

T-Addr
funcp(ℓ) : t ∨ (lab(f̂) = ℓ ∧ f̂ : t)

(p f | Γ) ⊢ addr(ℓ) : t

T-Load
Γ ⊢ e : int

(p f | Γ) ⊢ load«t»(e) : t

T-Store
Γ ⊢ e1 : int Γ ⊢ e2 : t

(p f | Γ) ⊢ store(e1, e2) : unit

T-Call
Γ ⊢ e0 : (ti)→ t ∀i · Γ ⊢ ei : ti

(p f | Γ) ⊢ call(e0, ei) : t

T-Operator
⊕ : t→ t′ ∀i · Γ ⊢ ei : t

(p f | Γ) ⊢ ⊕(ei) : t′

Figure 3.15: Typing judgments for instruction streams.

ensures the value being returned matches the declared type of the containing function.

A block reference is typed by rule T-Ref, which ensures that the number and type of

arguments to the block match the supplied argument and that the set of nonlocal implicit

block parameters already exist in the register environment typing. This ensures that any

register reference within the target stream is defined before evaluation begins on that stream.

For now, we make the assumption the target block’s declared parameters ensure a well-typed

stream.

Rule T-Context and rule T-Empty ensure a return context ŝ is well-typed with respect

to a register environment typing and the type of the called function’s return value t. A non-

empty return context ⟨f, b, r, s⟩ is well-typed if s is well-typed when r has type t in the

register environment typing. An empty return context is trivially well-typed.

40

T-Term
(p f | Γ) ⊢ T (p f | Γ) ⊢ ŝ

(p f | Γ) ⊢ T, ŝ

T-Switch
Γ ⊢ e : t′ ∀i · (p f | Γ) ⊢ refi

(p f | Γ) ⊢ switch e cvi 7→ refi refd

T-Return
Γ ⊢ e : t

(p f | Γ) ⊢ return e

T-Context
f : (ti)→ t (p f ′ | Γ, (r : t)) ⊢ s

(p f | Γ) ⊢ ⟨f ′, b, r, s⟩

T-Empty

(p f | Γ) ⊢ ϵ

T-Ref
blockf (ℓ) = b nonlocalf (b) ⊆ Γ ∀(ri : ti) ∈ param(b) · Γ ⊢ ei : ti

(p f | Γ) ⊢ ℓ(ei)

Figure 3.16: Typing judgments for terminators.

Rule T-Empty also provides a means to type a point of termination after a top-level

function has returned and no instructions remain to be evaluated.

Typing Blocks On the second front, we ensure a block’s stream is well-typed when block

and nonlocal implicit parameters are assumed to exist with their declared types. Figure 3.17

shows the rules for well-typed blocks and functions. A block is well-typed, according to

rule T-Block, if its implicit parameters are well-formed and its stream is well-typed pro-

vided a register environment typing that includes both the block parameters and nonlocal

implicit parameters. A function is well-typed, according to rule T-Func, if all its blocks are

well-typed and the entry block requires no registers to be defined prior to entry to the func-

tion. If this were not the case, then the function would not be able to be evaluated properly

with only its arguments. It would require some magical global state to be initialized before

evaluation began, which is unsupported (and unwanted) in this internal representation.

Additionally, rule T-Entry ensures that a set of arguments can be applied to a well-

typed function if the types of the argument values match the number and types of the

41

T-Block
implicit(b) is well-formed stream(b) = s (p f | (param(b), nonlocalf (b))) ⊢ s

p f | ∅ ⊢ b

T-Func
nonlocalf (entry(f)) = ∅ ∀b ∈ B · (p f | ∅ ⊢ b)

p | f is well-typed

T-Entry
p | f is well-typed f : (ti)→ t ⊢ vi : ti

p | ∅ ⊢ f(vi)

Figure 3.17: Well-typed properties for blocks and functions.

function’s arguments.

42

Appendix

3.A Soundness

In this section, we prove the soundness of the type system via a pair of progress and preserva-

tion theorems [66]. We show that a well-typed non-empty stream can make a step of evalua-

tion (Theorem 3.A.9) and a step of evaluation yields a well-typed stream (Theorem 3.A.10).

Interleaving these theorems concludes that a well-typed stream can be evaluated until the

termination of an instruction stream, or forever on non-termination. First, we give the

following definitions, which are necessary to state the progress and preservation theorems

precisely.

Definition 3.A.1. A register environment γ is well-typed with respect to a register envi-

ronment typing Γ, denoted Γ ⊢ γ, if dom(γ) = dom(Γ) and ∀r ∈ dom(γ) · Γ ⊢ γ(r) : Γ(r).

NB: dom(γ) includes only registers, not constant values.

Definition 3.A.2. A stream s and a return context ŝ are independent if no register occurring

in s occurs in ŝ and the stream of every block reachable from the terminator of s is also

independent from ŝ. A stream s and a return context ŝ are recursively independent if s and

ŝ are independent and the stream of ŝ (when not empty) is recursively independent from its

own return context.

Definition 3.A.2 leads immediately to the following two corollaries, which state that a

43

stream and its return context will remain independent as evaluation progresses.

Corollary 3.A.3. If s = I, s′ and ŝ are (recursively) independent, then s′ and ŝ are also

(recursively) independent.

Corollary 3.A.4. Let ℓ(ei) be a reference to block b occurring in T . If T and ŝ are (recur-

sively) independent, then stream(b) and ŝ are also (recursively) independent.

Next, we define the following four lemmas, which respectively state that additional (un-

referenced) register-type mappings can be added to a register environment typing without

changing the result of type checking, that a register environment and its typing can grow

symmetrically, that a well-typed expression can be evaluated, and that a well-typed stream

can be embedded in an independent stack context.

Lemma 3.A.5. If p f | Γ ⊢ s, then p f | Γ′,Γ ⊢ s for any Γ′.

Proof. Trivial as Γ ⊆ Γ′,Γ.

Lemma 3.A.6. If Γ ⊢ γ and v : t, then Γ, (r : t) ⊢ γ[r 7→ v].

Proof. Let Γ′ = Γ, (r : t) and let sγ′ = (γ[r 7→ v]). Then, as dom(Γ) = dom(γ), it must be the

case that dom(Γ′) = dom(γ′). Any previous value and type associated with r is overwritten.

Therefore Γ′ ⊢ γ′(r) : t and all registers r′ ̸= r ∈ γ remain well-typed with respect to Γ.

Lemma 3.A.7. If Γ ⊢ e : t and Γ ⊢ γ, then γ(e) is well-defined.

Proof. The value γ(e) is well-defined if e ̸= · and e ∈ dom(γ) by inversion of rule T-Reg.

Otherwise, if e is a constant value, then γ(e) is well-defined by inversion of rules T-Int,

T-Bool, or T-Unit.

Lemma 3.A.8. If s and ⟨f ′, b, r, s′⟩ are recursively independent, (p f | Γ) ⊢ s, ret(f) = t,

and (p f ′ | Γ′, (r : t)) ⊢ s′ for some Γ′ ⊆ Γ, then (p f | Γ) ⊢ s, ⟨f ′, b, r, s′⟩.

44

Proof. As (p f ′ | Γ′, (r : t)) ⊢ s′ and Γ′ ⊆ Γ, then (p f ′ | Γ, (r : t)) ⊢ s′ by application of

Lemma 3.A.5. Then, rule T-Context applies during the application of T-Term at the

tail of s, which is the only step that differs from the typing of (p f | Γ) ⊢ s, ϵ.

Now, progress and preservation can be stated (and proved).

Theorem 3.A.9 (Progress). If (p f | Γ) ⊢ s and all functions of p are well-typed, then for

any register environment γ such that Γ ⊢ γ, the stream s can evaluate one step.

More formally, for any memory environment µ, nondeterminism state ν, and effects list

Ψ, the step of evaluation (⟨p, f, b⟩ | γ | µ | ν | Ψ; s) → (⟨p, f ′, b′⟩ | γ′ | µ′ | ν ′ | Ψ′; s′) is

well-defined by the rules of Section 3.2 for some block b, block b′, function f ′, register context

γ′, memory context µ′, nondeterminism state ν ′, effects list Ψ′, and stream s′.

Proof. We prove by case analysis on s. For brevity, it is safe to assume that f ′ = f , b′ = b,

µ′ = µ, ν ′ = ν, and Ψ′ = Ψ unless otherwise stated.

Case (r ← move(e), s′). Evaluation of γ(e) is well-defined by inversion of rules T-Inst and

T-Move and application of Lemma 3.A.7. Then γ′ = γ[r 7→ γ(e)] by application of rules

E-Inst and E-Move.

Case (r ← ⊕(ei), s′′). Syntax ensures the correct arity of arguments for each operator.

Inversion of rules T-Inst and T-Operator and application of Lemma 3.A.7 ensure the

evaluation of each γ(ei) is well-defined and the type of each argument matches the declared

parameter type of the operator. Then, the result v of the operator is defined for all cases

except division by zero by application of rules E-Inst and E-Operator where s′ = s′′ and

γ′ = γ[r 7→ v]. For the division by zero case, s′′ = ϵ and Ψ′ = Ψ, halt(ex(math err)) by

application of rule E-Div-Abnormal.

45

Case (r ← addr(ℓ), s′). By inversion of rules T-Inst and T-Addr, ℓ must either be the

label of a function f ′′ ∈ p or an intrinsic f̂ with the function type t. In the former case,

γ′ = γ[r 7→ ref f ′′] by application of rules E-Inst and E-Addr. In the latter case,

γ′ = γ[r 7→ ref f̂] in the latter case by application of rules E-Inst and E-Addr-Intrinsic.

Case (r ← load«t»(e), s′′). Evaluation of γ(e) is well-defined by inversion of rules T-Inst

and T-Load and application of Lemma 3.A.7. Let w = width(t). If v = µ(γ(e), w) is

interpetable as a value of type t, then s′ = s′′ and γ′ = γ[r 7→ v] by application of rules

E-Inst and E-Load. Otherwise, s′ = ϵ and Ψ′ = Ψ, halt(ex(mem error)) by application

of rule E-Load-Abnormal.

Case (r ← store(e1, e2), s′′). Evaluation of γ(e1) and γ(e2) are well-defined by inversion

of rules T-Inst and T-Store and application of Lemma 3.A.7. Let w = width(t). If

γ(e1) > 0, then s′ = s′′, γ′ = γ[r 7→ unit], and µ′ = µ[γ(e1) 7→ γ(e2)] by application of rules

E-Inst and E-Store. Otherwise, s′ = ϵ and Ψ′ = Ψ, halt(ex(mem error)) by application

of rule E-Store-Abnormal.

Case (r ← call(e0, ei), s′′). Evaluation of γ(e0) and evaluation of each γ(ei) is well-defined

by inversion of rules T-Inst and T-Call and application of Lemma 3.A.7. By inversion

of rules T-Inst and T-Call, γ(e0) must either have the form ref f ′′ such that f ′′ ∈ p

or the form ref f̂ . In either case, the arity and type of expressions are guaranteed match

the parameters of the function by inversion of rule T-Call. First we consider the former

case. Let f ′ be a clone of function f ′′, let b′ be the entry block of function f ′, and let

param(b′) = ⟨ri : ti⟩. Then, s′ = stream(b′), ⟨f, b, r, s′′⟩ and γ′ = γ[ri 7→ γ(ei)] by application

of rules E-Call and E-Ref. Now consider the latter case. If f̂(µ, ν, γ(ei)) = (µ′, ν ′, v), then

s′ = s′′ and Ψ′ = Ψ, f̂(γ(ei)) by application of rule E-Intrinsic. Otherwise, s′ = ϵ and

46

Ψ′ = Ψ, f̂(γ(ei)), halt(ex(err)) by application of rule E-Intrinsic-Abnormal.

Case (switch e cvi 7→ refi refd, ŝ). Evaluation of γ(e) is well-defined by inversion of rule

T-Switch and application of Lemma 3.A.7. Let ℓ(ei) be the target block reference chosen

by the selection rules E-Case and E-Case-Default. Evaluation of each γ(ei) is well-

defined by inversion of rules T-Switch and T-Ref and application of Lemma 3.A.7. Let

b ∈ f be a block such that lab(b) = ℓ and let param(b) = ⟨ri : ti⟩. Then, s′ = stream(b) and

γ′ = γ[ri 7→ γ(ei)] by application of rules E-Switch and E-Ref.

Case (return e, ŝ). Evaluation of γ(e) is well-defined inversion of rule T-Return and

application of Lemma 3.A.7. If ŝ = ϵ, then s′ = ϵ and Ψ′ = Ψ, halt(γ(e)) by application

of rule E-Return-Last. Otherwise, ŝ = ⟨f ′, b′, r, s′′⟩ and s′ = s′′ and γ′ = γ[r 7→ γ(e)] by

application of rule E-Return.

Theorem 3.A.10 (Preservation). For every step of evaluation

(⟨p, f, b⟩ | γ | µ | ν | Ψ; s)→ (⟨p, f ′, b′⟩ | γ′ | µ′ | ν ′ | Ψ′; s′)

where all functions of program p are well-typed, the stream s is recursively independent from

its return context, (p f | Γ) ⊢ s, and Γ ⊢ γ, then for some register environment typing Γ′, s′

is recursively independent from its return context, (p f ′ | Γ′) ⊢ s′, and Γ′ ⊢ γ′.

Proof. We prove by case analysis on the evaluation rule. We cover similar rules in bulk first.

For brevity, it is safe to assume that f ′ = f unless otherwise stated.

Case (E-Inst). In this case, s has the form r ← O, s′. Let v be the value yielded by

the evaluation of the operator O by inversion of one of the following rules: E-Operator,

E-Move, E-Addr, E-Addr-Intrinsic, E-Load, or E-Store. Let Γ ⊢ v : t by respective

inversion of rule T-Operator, T-Move, T-Addr, T-Addr, T-Load, and T-Store.

47

Then, γ′ = γ[r 7→ v] and, by inversion of rule T-Inst, (p f | Γ, (r : t)) ⊢ s′. Then,

Γ′ = Γ, (r : t) and Γ′ ⊢ γ′ by application of Lemma 3.A.6. Lastly, s′ is recursively independent

from its return context by application of Corollary 3.A.3.

Case (E-Call). In this case, s has the form r ← call(e0, ei), s′′. Let γ(e0) = ref f ′′, f ′

be a clone of the function f ′′, b′ be the entry block to f ′, and param(entry(f ′)) = ⟨ri : ti⟩.

Then, s′ = stream(b′), ⟨f, b, r, s′′⟩ and γ′ = γ[ri 7→ γ(ei)]. By inversion of rule T-Call,

Γ ⊢ e0 : (ti) → t and Γ ⊢ ei : ti for each ei. Then, Γ′ = Γ, (ri : ti). By inversion of

rule T-Func, nonlocalf (b) = ∅. By inversion of rule T-Block, (p f ′ | ∅) ⊢ stream(b′)

and, by application of Lemma 3.A.5, (p f ′ | Γ′) ⊢ stream(b′). Then, (p f ′ | Γ′) ⊢ s′ by

application of Lemma 3.A.8 and Γ′ ⊢ γ′ by repeated application of Lemma 3.A.6. Lastly,

stream(b′) is recursively independent from ⟨f, b, r, s′′⟩ as b′ is a block of a cloned function ref-

erencing only fresh registers and s′′ is recursively independent from its own return context.

Case (E-Intrinisc). In this case, s has the form r ← call(e0, ei), s′ where γ(e0) = ref f̂ .

Let f̂(µ, ν, γ(ei) = (µ′, ν ′, v) and let γ′ = γ[r 7→ v]. By inversion of rule T-Call, we have

Γ ⊢ e0 : (ti) → t which implies v : t. By inversion of rule T-Inst, (p f | Γ, (r : t)) ⊢ s′.

Then, Γ′ = Γ, (r : t) and Γ′ ⊢ γ′ by application of Lemma 3.A.6. Lastly, s′ is recursively

independent from its return context by application of Corollary 3.A.3.

Case (E-Switch). In this case, s has the form switch e cvi 7→ refi refd, ŝ. Then, if ℓ(ei)

is the target reference chosen by the application of rules E-Case and E-Case-Default,

blockf (ℓ) = b′, stream(b′) = s′′, param(b′) = ⟨ri : ti⟩, s′ = (s′′, ŝ), and γ′ = γ[ri 7→ γ(ei)]. By

inversion of rule T-Ref, nonlocalf (b) ⊆ Γ and Γ ⊢ ei : ti for each ei. Then, we have

Γ′ = Γ, (ri : γ(ei)) and Γ′ ⊢ γ′ by application of Lemma 3.A.6. Next, by inversion of

48

rule T-Block (p f | param(b), nonlocalf (b)) ⊢ s′′. It follows that (p f | Γ′) ⊢ s′′ by appli-

cation of Lemma 3.A.5. If ŝ = ϵ, then (p f | Γ′) ⊢ s′, ŝ is immediate. Otherwise, ŝ has the

form ⟨f ′, b′, r, s′′′⟩ such that (p f | Γ) ⊢ ŝ by inversion of rule T-Term and (p f | Γ′) ⊢ (s′, ŝ)

by application Lemma 3.A.8. Lastly, s′ is recursively independent from its return context

by application of Corollary 3.A.4.

Case (E-Return). In this case, s has the form return e, ŝ where ŝ = ⟨f ′, b′, r, s′⟩ and

γ′ = γ[r 7→ γ(e)]. By inversion of rules T-Term and T-Context, (p f ′ | Γ, (r : t)) ⊢ s′.

By inversion of rule T-Return, γ(e) : t. Then, Γ′ = Γ, (r : t) and Γ′ ⊢ γ′ by application

of Lemma 3.A.6. Lastly, s′ is recursively independent from its own return context as s is

recursively independent from ŝ.

Case (Termination). For the application of rules E-Return-Last, E-Div-Abnormal,

E-Load-Abnormal, E-Store-Abnormal, and E-Intrinsic-Abnormal, s′ = ϵ and

γ′ = γ. The empty stream ϵ types by application of rule T-Empty where Γ′ = Γ and is

trivially independent from its own empty return context.

Lemma 3.A.11 (Well-Typed SSA). If p | f is well-typed, ⟨f, b1, d⟩ is the unique definition

of register r, and ⟨f, b2, u⟩ is a use of register r, then b1 ≺f b2.

Proof. Suppose this is not the case. Then, (r : t) ∈ implicit(b2) as b1 ̸≺ b2 and there must

exist some path entry(f) ;f b2 which does not define r. Then, (r : t) ∈ nonlocalf (entry(f))

by definition of the function nonlocal ′f and rule T-Block cannot be applied.

49

4 Properties

In this chapter, properties of the Waddle internal representation that must be maintained

by graph transformations are defined. Section 4.1 defines static single assignment form that

ensures each use of a register has a unique definition. Section 4.2 defines loop-closed static

single assignment form that adds the restriction that no definition can escape the loop in

which it is defined. Section 4.3 defines the canonical form that adds several restrictions to

aid reasoning about loop structures.

4.1 Static Single Assignment Form

A control flow graph in static single assignment form (SSA form) requires that every

register is defined at a unique location in the control flow graph and that every use of a

register is dominated by its definition. A definition dominates a use if either the definition

comes before the use in the same block or the block containing the definition dominates the

block containing the use.

SSA form was first introduced by Rosen et al. [56] as a means to recognize and ex-

ploit equivalences of expressions in a program. Prior to SSA form, redundancy elimination

techniques were either restricted to comparing computations lexically or restricted to value

numbering within a single basic block. Early global value numbering algorithms required

computing equivalence classes for variables that are assigned multiple times [7]. With SSA

form, global value numbering can be performed without the need to consider multiple as-

signments.

With single assignment, use-definition relationships are explicit as there is exactly one

reaching definition for every use of a register. Dead code elimination becomes an iterative

50

y ← x = 42
switch y false 7→ f t

y ← x+ 1 y ← x+ 2

z ← x× y
· · ·

c

t f

j

y ← x = 42
switch y false 7→ f t

y1 ← x+ 1 y2 ← x+ 2

y3 ← ϕ(t 7→ y1, f 7→ y2)
z ← x× y3
· · ·

c

t f

j

y ← x = 42
switch y false 7→ f() t()

y1 ← x+ 1
branch j(y1)

y2 ← x+ 2
branch j(y2)

z ← x× y3
· · ·

c()

t() f()

j(y3)

Figure 4.11: Insertion of a ϕ-node at a join point. The graph on the right uses block
parameters instead of explicit ϕ-nodes.

search for registers with no uses. Copy propagation can be implemented trivially by re-

placing all uses of a register r defined as r ← v with v. SSA form also greatly simplifies

register allocation, as the interference graphs of such programs are chordal and can be col-

ored optimally in linear time [32, 50]. Unfortunately, performing register assignment before

SSA elimination poses a significant difficulty. If a copy must occur between two registers

that have been spilled, there will be no additional registers to use for temporary space on

architectures that do not support memory-to-memory copies.

A control flow graph can be converted into SSA form by versioning registers at each

assignment point so that all assignments are unique. Then, each use of a register r is

rewritten to use the version of the variable most recently assigned on the control flow path

to the use. If there are multiple control flow paths to the use with different live version of

r, then a special phony instructions denoted by ϕ-nodes are inserted where these paths join.

These nodes represent a choice of values determined by the specific control flow path that

was taken during program evaluation. It is important to note that ϕ-nodes are a temporary

and notational artifact of the internal representation and are replaced by copy instructions

when converted out of SSA form. This process is illustrated in Figure 4.11. SSA construction

algorithms are discussed further in Section 5.3.

51

The use of ϕ-nodes are subsumed by Waddle’s use of block parameters and terminator

arguments. A similar technique is also used by the Swift Intermediate Language [31] as early

as 2015. Block parameters provide a major conceptual advantage. The node z ← ϕ(x, y)

defines z and uses x and y. However, these uses actually occur on the edge into this block

as y is not guaranteed to be well-defined on the control flow path from the first predecessor,

nor is x guaranteed to be well-defined on the control flow path from the second predecessor.

When using block parameters, the ϕ-nodes are split across block boundaries such that the

uses occur at the point of the arguments and the definitions occur at the point of the block

parameters. This makes the location of register definitions and uses explicit.

Several interesting extensions to SSA form exist to encode more information in the in-

ternal representation. These extensions are discussed briefly below, but are not considered

in the remainder of this work.

Static Single Information form [10] adds σ-nodes, the dual of ϕ-nodes, at branch points

such that uses of variables in disjoint control flow paths are distinguishable. For example, a

branch predicate may test a value against zero before a division. On each control flow path

it is possible to make different equality statements against the same value. Such statements

are not possible to make in SSA form without additional dataflow analysis.

Psi-SSA form [61] supports encoding predication on architectures that support condi-

tional execution. For example, the expression r ← ψ(v1, p ? v2) states that r has value v2 if

predicate p is true and has value v1 otherwise. Figure 4.12 shows an example of conditional

execution in the ARM instruction set. The CMP instruction sets a series of flags that are read

by the following instructions (using the conditional execution suffixes GT, LT, and NE). If the

corresponding flag is not set, then the operation does nothing for that cycle.

Hashed SSA [20] models certain memory operations. The node r′ ← χ(r) is inserted at

program locations where r may be modified through indirect stores or overlapping memory

52

loop: CMP Ri, Rj

SUBGT Ri, Ri, Rj

SUBLT Rj, Rj, Ri

BNE loop

Figure 4.12: Euclid’s Algorithm in the ARM instruction set.

regions and the node µ(r) is inserted wherever r is read. This additional information allows

a store to be declared dead once no µ-node references some location.

Array SSA form [38] models the partial update of array values by tracking the most

recent time a definition to an array element was evaluated. The statement @Ai[j] = i

denotes that the definition Ai updated index j at time i. This form also requires that

ϕ-nodes be inserted at certain definition points in order to merge partial updates of arrays.

This is unnecessary in SSA as assignments completely kill the previous scalar value. Array

SSA form has applications in parallelization of loop iterations.

4.2 Loop-Closed Static Single Assignment Form

A control flow graph in loop-closed static single assignment form (LCSSA form) re-

quires, in addition to the properties of SSA, that definitions do not escape loops. Specifically,

all uses of a register defined in a loop must occur in that loop. This additional property

tends to make control flow transformations over loops more local. Transformations such as

loop unrolling may affect blocks arbitrarily far from the loop being transformed. Figure 4.21

demonstrates such non-locality. After the block b is duplicated, a second reaching definition

of the logical register s is made available to the block distantly reachable via block e. To

repair this graph, block parameters must be inserted at join points and the use must be

rewritten to the new unique reaching definition. To enforce locality of loop transformations,

53

branch b()

x← load(i1)
i2 ← i1 + 1

s2 ← s1 + x

switch x (−1) 7→ e() l()

branch h(i2, s2) · · · ← s2

h(i1, s1)

b()

l()

e()

..
.

branch b()

x← load(i1)
i2 ← i1 + 1

s2 ← s1 + x

switch x (−1) 7→ e(s2) b2()

y ← load(i2)
i3 ← i2 + 1

s3 ← s2 + y

switch y (−1) 7→ e(s3) l()

branch h(i3, s3)

· · · ← s4

h(i1, s1)

b1()

b2()

l()

e(s4)

..
.

Figure 4.21: Unrolling a loop can affect blocks arbitrarily in the graph.

LCSSA form ensures that all values escape their defining loop through explicit block pa-

rameters. LCSSA construction and reconstruction transformations are discussed further in

Section 7.2.

4.3 Canonical Form

A control flow graph in canonical form is a control flow graph with the following restrictions

applied to each loop l.

Property 4.3.1. Loop l has exactly one latch.

Property 4.3.2. Loop l has exactly one preheader.

Property 4.3.3. Every exit of loop l has predecessors only in l.

The latter two properties deal with dedication of a block to a particular loop. A preheader

and a dedicated exit clearly define the boundaries of a loop, and are ineffectual to the program

54

h

l

h

p

l

h

p1 p2

l

Figure 4.31: Violations of canonical form that prevent the efficient hoisting of a loop invariant
instruction.

when the loop is not otherwise entered or exited.

(Property 1) ensures that each loop has exactly one backedge. As it turns out, this

property greatly simplifies loop trip count calculation and reconstruction of loops and loop

nesting structures after a change in the control flow graph.

(Property 2) helps to simplify hoisting of instructions from within loop bodies. A ded-

icated preheader ensures a safe target for such instructions. An instruction hoisted from

loop l must be moved to each block P ≡ predG(headerG(l)) \ bodyG(l), otherwise a path is

created that no longer executes this instruction. When |P | > 1, the hoisted instruction is

duplicated and there now exist duplicate definitions of the same register. This breaks SSA

form and requires reconstruction. If a block b ∈ P has multiple successors, then there may

be a path containing b that never enters the loop, and hoisting the instruction to b will add

an instruction to this path. Control flow graphs violating this property are illustrated in

Figure 4.31.

(Property 3) similarly helps to simplify sinking of instructions from within loop bodies.

Dedicated exits ensure a set of safe targets for such instructions. An instruction sunk from

loop l must be moved to the each block e ∈ exitG(L). If headerG(l) ̸≺G e, then sinking

the instruction to e may add an instruction on a path that never enters the loop. If an

exit block e ∈ exitG(l) has a predecessor outside of l (but is still dominated by headerG(l)),

55

h

b l e

h

b l e1

e2

Figure 4.32: Violations of canonical form that prevent the efficient sinking of a instruction
calculated but unused/unobserved in the loop body.

then the sunk instruction may be executed twice on a path leaving the loop. Control flow

graphs violating this property are illustrated in Figure 4.32. It is important to note that an

instruction sunk to multiple exits, even when in canonical form, may need to be rewritten

to preserve SSA form.

A flowgraph can be converted into canonical form by inserting additional blocks on edges

that violate one of the three restricted properties of a loop. The details of canonicalization

are further discussed in Chapter 7.

56

5 Related Work

In this section, algorithms that form the foundation of Waddle’s reconstruction techniques

are introduced. Some of the algorithms presented in this chapter are used directly by the

Waddle implementation. Others are presented for completeness. Section 5.1 and Section 5.2

illustrate construction and reconstruction algorithms for the dominator tree. Section 5.3 and

Section 5.4 illustrate construction and reconstruction algorithms for static single assignment

form.

5.1 Dominator Tree Construction

Dominator tree construction is an extremely well-researched topic. This section is broken

into four sections. First, we discuss a class of iterative algorithms that use solutions to

dataflow equations to build a dominator tree. This also serves as a good foundation for how

these algorithms were later improved. Second, we discuss the Lengauer-Tarjan algorithm

which is very widely used in practice. Third, we discuss an improvement on the Lengauger-

Tarjan algorithm which first approximates a solution, then refines it. Fourth, we discuss a

few examples of linear time algorithms, some of which sacrifice clarity for speed.

5.1.1 Iterative Algorithms

Aho and Ullman [2] and later Purdom and Moore [51] present straightforward techniques to

determine the dominators of a block b by removing it from the graph and determining which

nodes are no longer reachable from b0. If b′ is no longer reachable after removing b, then all

paths from b0 to b′ include b. Conversely, if b′ is still reachable after removing b, then there

57

must be another path from b0 to b′ that avoids b. This algorithm has a worst-case complexity

of O(mn). A similar algorithm by Aho et al. [1] reduces this complexity to O(m log(m)) for

reducible graphs.

Allen and Cocke [2, 3] showed that the dominance relation is equivalent to the maximal

solution of the following forward data-flow equation. A solution to dom(b) for all blocks

in a control flow graph can be computed by finding the maximum fix point solution to the

following set of equations.

dom(b0) = {b0} dom(b) =

 ∩
p∈pred(b)

dom(p)

 ∪ {b}
These equations form a rapid framework, and such an iterative algorithm that processes

the graph in a reverse post-order with respect to T will halt in no more than d(G, T) + 3

iterations, where d(G, T) is the loop connectedness number with respect to T (the maximum

number of backedges in a cycle-free path) of G [37]. For reducible graphs, the value of

d(G, T) is independent of the traversal order encoded by T . Typically, control flow graphs

are reducible [3] and d(G, T) ≤ 3 [39]. A naïve fixed-point solution of the above dataflow

equations can be found in O(mn2) time.

Cooper et al. [22] present an engineered version of the iterative algorithm that performs

well in practice. The algorithm uses the key insight that the dom sets resulting from the

above data-flow equations can be ordered

dom(b) = ⟨b0, . . . , idom(idom(b)), idom(b), b⟩

such that the set encodes the unique path b0 →D b. The engineered algorithm uses an ordered

intersection operator that creates dom(b) precisely in this order and encodes the elements

of the set directly in the dominator tree under construction. By ordering dominators in this

manner, if dom(b1) ∩ dom(b2) ̸= ∅, then the intersection is a prefix of both dom(b1) and

dom(b2).

58

The time required for each iteration is dominated by performing intersections on paths

b0 →D b1 and b0 →D b2. These intersections are equivalent to finding the ancestors of

ncaD(b1, b2) in D. If these queries are performed by tracing paths up the tree, a single

iteration of Cooper’s algorithm takes O(nm) time. In practice, many queries will require

o(n) time.

Cooper et al. claim their algorithm to be competitive with the Simple Lengauer-Tarjan

algorithm (discussed below in Section 5.1.2) for small and moderately-sized graphs. Later,

testing against a different implementation of the simple Lengauer-Tarjan algorithm led to

contradictory experimental results [27, 30].

5.1.2 Lengauer-Tarjan Algorithm

Lengauer and Tarjan propose an algorithm that uses properties of semidominator paths to

make an initial guess of a block’s immediate dominator, then refines this initial guess in a

second pass [45,47]. The algorithm works in three sequential steps, briefly described below.

We will use a concrete example to illustrate the latter two steps.

1. Order blocks. Generate a depth-first spanning tree T and a total ordering of vertices

denoted OT .

2. Calculate semidominators. The semidominator of a node b ̸= b0, denoted sdom(b),

is the node s with the minimal rank with respect to OT such that there is a semidomi-

nator path P = s ; b where b ≤OT
bi for all bi ∈ P \ {s}. Notice for each block b ̸= b0,

sdom(b) ̸= b.

3. Calculate immediate dominators. For each block w ̸= b0, a block u ̸= sdom(w) is

chosen such that u ∈ sdom(w)→T w and sdom(u) has the smallest rank with respect

to OT . Then, the immediate dominator of w can be found directly by the following.

59

1

2

5

6

7

3

4

9

8

Figure 5.11: A depth-first spanning tree with flow graph edges shown as dashed lines.

idom(w) =


sdom(w) if sdom(w) = sdom(u),

idom(u) otherwise

Example In Figure 5.11, the block with rank 7 has semidominator paths ⟨6, 7⟩, ⟨5, 8, 7⟩,

and ⟨2, 9, 8, 7⟩, making its semidominator the block with rank 2. The tree path from 2

to 7 is ⟨2, 5, 6, 7⟩, making 5, 6, and 7 candidates to be the relative dominator of 7. The

semidominator of these blocks are 2, 5, and 2 respectively, making u either the block with

rank 2 or the block with rank 5. In either case, the semidominators are the same and the

immediate dominator of the block with rank 7 is the node with rank 2.

The blocks of the graphs are processed in reverse (right to left) pre-order to ensure

that the necessary information is available when needed. In order to find the block u with

the minimal semidominator without exhaustive search, a link-eval data structure is used.

This data structure maintains a forest F so that by the time a block u with a minimal

semidominator needs to be chosen, there is a tree in F rooted at sdom(w) containing the

blocks in P . Initially, each block in T is a single-vertex tree in F . The data structure defines

the following two operations.

60

- link(w) Insert the edge (p, w) into F , where p = pT (w).

- eval(w) Let r be the root of the subtree in F containing w. If w = r, return r.

Otherwise, return the block u ∈ P \ {r} with the minimum semidominator.

The algorithm runs in O(m logm/n+1(n)) using a simple implementation of the link-eval

data structure using only path compression as an optimization. This bound can be reduced to

O(mα(m,n)) using a more sophisticated implementation of the data structure that keeps F

relatively balanced. We refer to these two versions as the Simple Lengauer-Tarjan algorithm

and the Sophisticated Lengauer-Tarjan algorithm, respectively. Here, α(m,n) refers to the

extremely slow-growing functional inverse of the fast-growing Ackermann function, defined

as

α(m, n) = min{i ≥ 1 | A(i, ⌊m
n
⌋) > log(n)}

where one of many equivalent definitions of the Ackermann function A(i, j) is defined for

parameters i, j ≥ 1 as follows.

A(1, j) = 2j

A(i, 1) = A(i− 1, 2)

A(i, j) = A(i− 1, A(i, j − 1)) for i, j ≥ 2

It is important to note that α(m,n) ≤ 4 for all conceivable values of m and n [23]. Although

the algorithm is asymptotically superlinear, it is effectively linear in practice.

5.1.3 Semi-NCA

Georgiadis [27] presents an alternative version of the Lengauer-Tarjan algorithm, referred to

as SNCA, which uses a simpler method to calculate immediate dominators from semidom-

inators. The algorithm relies on the observation that for any block b ̸= b0, the following

61

holds.

idom(b) = ncaD({sdom(b), pT (b)})

The algorithm performs the first two steps of the Lengauer-Tarjan algorithm to calculate

semidominators. Then, the dominator tree D is built incrementally by inserting blocks in

the order that they occur within OT . The parent of b in D is the block x ∈ b0 →D pT (b)

with the largest rank such that x ≤OT
sdom(b). If this step is performed naïvely, then

the modified step takes O(n2) in the worst-case. However, empirical results indicate that

semidominators are generally a good approximation of immediate dominators. Gabow, Cole,

and Hariharan’s [26] results imply this step can be accomplished with linear asymptotic

complexity, but the application of this result to the algorithm does not seem to have been

attempted.

This algorithm is simpler for several reasons. First, there is no need to maintain an

auxiliary structure that maintains a set of blocks sharing a semidominator, and another

auxiliary array no longer needs to be maintained as the eval operation can be simplified.

Third, the algorithm can be performed using one less pass over the blocks of the graph as

the immediate dominator is found directly, not implicitly through relative dominators.

5.1.4 Linear Time Algorithms

In 1985, Harel [33] introduced a linear-time algorithm for computing dominators, but the

description was later found to be incomplete [8, 29]. Alstrup et al. [8] later gave a true

linear-time algorithm using Fredman and Willard’s Q-heaps [25]. However, the construction

of this algorithm is purely theoretical. Fredman and Willard’s Q-heaps forego any pretense

of practicality and presume n ≥ 212
20 .

Alstrup and Lauridsen [9] describe a simple linear time algorithm for constructing the

dominator tree of a reducible control flow graphs. In summary, the immediate dominator

62

Figure 5.12: A depth-first spanning tree with flow graph edges shown as dashed lines. The
figure on the right is the augmented graph of the microtree with a solid outline, with the
root and blue edges highlighted.

of each block b ̸= b0 is ncaD(pred(b)), and processing the blocks in topological order (with

backedges removed) guarantees that the predecessors of b have already been inserted into D

by the time b is processed. Gabow [26], and later Cole and Hariharan [21], present a useful

algorithm that computes nearest common ancestor queries for trees in which vertices are

added and removed only at the leaves in linear time.

Buchsbaum et al. [15] present a claimed linear-time algorithm based on the Lengauer-

Tarjan algorithm that first decomposes T into a set of vertex-disjoint regions called mi-

crotrees. Each microtree contains at most g blocks for some fixed parameter g. Every block

belongs to a single microtree, and the microtree containing block b is denoted by micro(b).

Each non-trivial microtree M is associated with an augmented-graph, aug(M), which is

the control flow graph induced by the blocks of M plus an additional phony block root(M),

representing the blocks of the graph external to the microtree, and the following set of blue

edges.

{(root(M), bj) | (bi, bj) ∈ E, bi ̸∈M, bj ∈M}

Augmented graphs are illustrated in Figure 5.12. The Simple Lenguager-Tarjan algorithm

is applied to each augmented graph and the result is memoized so that the result is not

recalculated for isomorphic microtrees. Notice that each graph has O(g) blocks and O(g2)

edges, and this step can be completed in linear time when g is O(log1/3 n) [29].

63

b0 b1 b2 . . . bn−2 bn−1 bn

Figure 5.21: Inserting the sequences of edges (bn−2, bn), (bn−3, bn), . . . , (b1, bn) changes the
immediate dominators of Θ(n) blocks per operation, and Θ(n2) blocks overall.

For each block b, it is determined whether idom(b) ∈ micro(b). If so, the immediate domi-

nator is already known. Otherwise, the immediate dominator is calculated by approximating

a pushed external dominator and refining the result.

The inverse Ackermann function α(m, n) reduces to a constant when m/n is Ω(logO(1) n)

(when m is slightly superliner on n). The runtime analysis claims to achieve this reduction by

applying new bottom-up disjoint set union results to the original link-eval data structure [14].

The analysis was found to be incorrect and the runtime was later repaired by changes to the

implementation of the link-eval data structure to support the original claims [16, 27].

5.2 Dominator Tree Reconstruction

Carroll and Ryder [17] point out the non-locality property of domination, as follows.

Given two nodes x and y in the control flow graph, determining whether x dom-

inates y depends on the presence or absence of paths through nodes arbitrarily

far from either x or y. Adding or removing a single flow edge – an act that can

add or remove a large number of paths – can thus affect domination between

nodes arbitrarily far from the altered edge.

A sequence of Θ(n) edge insertions or deletions can be constructed such that each operation

changes the immediate dominator of Θ(n) blocks [48]. Such a sequence is illustrated in

Figure 5.21. In practice, it may be unlikely for such a pessimistic sequence to occur naturally.

64

5.2.1 Ramalingam-Reps Algorithm

Ramalingam and Reps [53] describe an approach to update the dominator tree of a reducible

control flow graph when a single flow edge is inserted or removed. The basic idea of the

algorithm is to conservatively approximate a set of affected blocks for which the immediate

dominator changes, then re-calculate the new immediate dominator using the old dominator

tree.

If the affected vertices are processed in topological order, the algorithm requires only a

single pass. The control flow graph is prioritized such that each block b ∈ B is assigned a

priority, denoted priority(b), where priority(b1) < priority(b2) when b1 ; b2 in the acyclic

graph induced by removing the backedges. Block priorities imply a topological ordering.

The insertion of an edge must also update the priority ordering of the graph. The deletion

of an edge, however, does not affect the priority ordering of the graph.

The worst-case complexity of updating the dominator tree (excluding the step of updating

the priority ordering when necessary) is O(∥A∥↔ log(n)), where A is the approximate set of

affected blocks. Alpern et al. [6] present an incremental algorithm to update the priority

orderings of a graph after the insertion of an edge that takes O(∥κ∥↔ log(∥κ∥↔)) time in

the worst case, where κ is the set of blocks whose priorities will change. In all, updating the

dominator tree after inserting or removing a single edge takes O(m log(n)) time.

Edge Insertion The insertion of backedges does not affect domination and requires no

update to the dominator tree1. The insertion of a forward edge (u,w) where w was previously

reachable may create an additional path to a block y that avoids idom(y). The affected

blocks are conservatively approximated by the follow set, which contains the blocks whose
1Of course, such a change can still deeply affect other structures and properties of the graph that may

need to be updated independently.

65

immediate dominator lies on the ancestor path from w to ncaD({u,w}) in D.

{v | idom(v) dominates idom(w) and is strictly dominated by nca({u,w})}

The immediate dominator of each block in this set must be recalculated. This transformation

is illustrated in Figure 5.22. If a block’s dominator changes after the insertion of an edge,

its new immediate dominator must be ncaD({u,w}).

Let R be a graph rooted at w disjoint from G. The insertion of the forward edge (u,w)

expands G to include the blocks in R. To update the dominator tree of G, the dominator

tree of R is first calculated statically (using Lengauer-Tarjan or a similar algorithm), and

the dominator tree rooted at w is made a child of u in D. Then, each forward edge from R

to a previously reachable block is inserted individually as described above.

Edge Deletion The deletion of backedges does not affect domination and requires no

update to the dominator tree. The deletion of a forward edge (u,w) where w is still reachable

may reduce the set of paths to a block y, changing its immediate dominator. The affected

blocks are conservatively approximated by the following set, which contains the blocks that

are siblings of w in D.

{v | idom(v) = idom(w)},

The immediate dominator of each block in this set is recalculated. If the deletion of edge

(u,w) causes the subgraph R (consisting of the blocks dominated by w) to become discon-

nected, then each block is removed (or marked as unreachable), and any forward edges from

R to a reachable block must be deleted individually as described above.

5.2.2 Dynamic SNCA Algorithm

Patakakis et al. [49] present DSNCA, a dynamic version of the static SNCA algorithm

described in Section 5.1.3. The dynamic version of the algorithm maintains semidominators

66

a

b c

d e

f g

i j

m

h

k l

a

b c

d e

f g

i j

m

h

k l

Figure 5.22: The deletion (left) or insertion (right) of edge (d, f) requires consequent process-
ing of edge (f, j). The set of possibly affected nodes are highlighted in orange and nca(f, j)
is highlighted in blue.

of each block. Properties of the depth-first spanning tree T and a total ordering of vertices

OT is used as a heuristic to determine when the dominator tree can be updated locally. In

this version, each block b ∈ T is annotated with pre-order and post-order traversal ranks

with respect to OT , denoted pre(b) and post(b) respectively.

If the insertion or deletion of a flow edge (u,w) invalidates the ordering OT , then the algo-

rithm runs from scratch (and chooses a new ordering OT in the process). The ordering is in-

validated after the insertion of an edge when pre(u) < pre(w) and post(u) < post(w) or w ̸∈ T

and is also invalidated after the deletion of an edge when u = pT (w) or u ∈ sdom(w) ; w.

Otherwise, T remains a valid depth-first spanning tree and dominators can be up-

dated incrementally. The semidominators are recomputed only for blocks b ∈ T where

pre(b) ≤ pre(w). The immediate dominators are recomputed from scratch from the updated

semidominators for all blocks. Notice that when OT remains a valid ordering, individual

pre-order and post-order annotations do not need to be modified. On insertion a flow edge is

inserted but a tree edge is not. On deletion, the relative ordering of pre-order and post-order

ranks is unchanged.

Each operation take Ω(n) time, but experimental results show this algorithm to be more

67

efficient than static recomputation of the dominator tree using the Simple Lengauer-Tarjan

algorithm [49] as well as a dynamic algorithm presented by Sreedhar et al. [57, 58], which

performs better for edge insertions.

5.2.3 Depth-Based Heuristic

Georgiadis et al. [28] improve the approximation of affected vertices by restricting the traver-

sal of D to blocks that exceed a given depth. The exact set of affected blocks is given by the

following on the insertion of an edge (u,w), which is computed using a max-priority queue

of blocks ordered by depth in D.

{b | depthD(ncaD({u,w})) < depthD(idom(b)) < depthD(b
′) ∀b′ ∈ (w ; b)}

A single insertion is bound by the number of blocks and their adjacent edges when

finding the set of affected vertices, which is O(m) in the worst case. However, a sequence of

k insertions can be done in O(mmin{k, n}+ kn) time (and the kn factor can be reduced to

k [26]). This is useful for the bulk insertion cases, where a previously unreachable component

is reachable after the insertion of an edge and additional edges leaving the component must

be processed. Experimental results show this algorithm to be more efficient than DSNCA

(discussed in Section 5.2.2) when dealing primarily with the insertion of edges.

5.3 SSA Construction

In this section we present algorithms to convert a flow graph into SSA form. One such

algorithm is incremental in nature, allowing it also to be used for SSA reconstruction as the

flow graph is transformed, discussed further in the next section. Here, we also discuss the

concept of minimality. Minimality is a desired property so that unnecessary definitions are

not placed into the program. This can balloon the size of the program under optimization,

68

make optimization opportunities more difficult to discover, and make the optimization less

efficient, as it has to manage a larger number of blocks.

Cytron et al. present an efficient algorithm to construct SSA form from an arbitrary

control flow graph [24]. The algorithm consists of two sequential phases. First, ϕ-nodes of

the form r ← ϕ(b1 → r, . . . , bn → r) are inserted at the blocks composing the dominance

frontier for each definition of the register r. Such ϕ-nodes are trivial, as they are defined

in terms of themselves only. The insertion of such nodes causes the live ranges of each

assignment to the register r to become disjoint. Then, all assignment targets are renamed

with unique subscripts (r becomes r1, r2, . . .) and each use of a register is replaced by a

unique reaching definition. This step can be accomplished by maintaining a stack of reaching

definitions for each register. Blocks are traversed recursively in dominance order, where an

assignment to a register is a push to that register’s stack and exiting a block is a symmetric

pop. Each use of a register can be replaced by the top of that register’s stack at the point of

use. Because this algorithm requires the calculation of dominance frontiers, the algorithm is

quadratic in the number of blocks.

Cytron’s construction algorithm guarantees a translation into minimal SSA form, where

the number of inserted ϕ-nodes are as small as possible subject to the following condition: if

two non-null paths b1 ; bj and b2 ; bj first converge at block bj, and both b1 and b2 contain

an assignment to r, then a trivial ϕ-node for r has been inserted at bj.

In minimal SSA construction, ϕ-nodes are placed at all the blocks where the reaching

definitions for two registers first merge. The reaching definitions at this merge point are

not necessarily live, and the inserted ϕ-node may never be used. Choi et al. [19] present a

modification to Cytron’s construction algorithm utilizing global liveness analysis that instead

produces a pruned SSA form, which prevents the insertion of dead ϕ-nodes in addition to

being minimal.

69

· · · ← v
v ← . . .
· · · ← v

v ← . . .
· · · ← v

v ← . . .
· · · ← v

v ← . . .
· · · ← v

Figure 5.31: Briggs-minimal places a ϕ-node at the merge point in the graph on the left as
v is live across the blue edge, but pruned SSA does not. Neither Briggs-minimal nor pruned
algorithms places a ϕ-node at the merge point in the graph on the right.

A third flavor of SSA, called semi-pruned or Briggs-minimal, uses a simple local heuristic

to place fewer dead ϕ-nodes than minimal SSA construction without requiring data-flow

analysis [13]. Briggs et al. made the assumption that the live range of registers can often be

very small and contained within a single basic block. Semi-pruned construction may place

dead ϕ-nodes, but will never place a ϕ-node for a variable that is not live across any edge in

the control flow graph. The non-local registers that are live across a control flow edge can

be found in a linear pass over the control flow graph. The difference between pruned and

semi-pruned form is illustrated in Figure 5.31.

Braun et al. [12] present an alternative construction algorithm for SSA form that no-

tably does not depend on the calculation or maintenance of dominance frontiers. Instead of

calculating the merge points from the set of definitions and pushing the definitions down to

the uses of a register, the algorithm traces the control flow graph backwards and searches

for a reaching definition at each use, inserting ϕ-nodes to disambiguate multiple reaching

definitions as they are discovered. A version of this algorithm is presented in greater detail

in Section 5.4.

This algorithm has several practical advantages. The algorithm is suited for construction

of a control flow graph in SSA-form directly from an abstract syntax tree, while Cytron’s

algorithm requires a control flow graph to already exist. In addition, transformations such as

arithmetic simplification, common subexpression elimination, constant folding, and constant

propagation can be applied on the fly during construction, resulting in fewer ϕ-nodes and

70

switch x3 0 7→ t() f()

x1 ← 0
branch c(x1)

x2 ← . . .
branch c(x2)

· · · ← x3 . . .

a()() b()()

c(x3)()

t()(x3) f()()

switch x3 0 7→ t() f()

x1 ← 0
x3 ← x1

branch t()

x2 ← . . .
branch c(x2)

· · · ← x3 . . .

a()() b()()

c(x3)()

t()(x3) f()()

Figure 5.41: A simplified jump-threading transformation shows that the static single assign-
ment property of a control flow graph can be easily broken.

even fewer basic blocks when the value of a conditional jump can be determined as the control

flow graph is generated. This algorithm runs competitively with the highly-optimized version

of Cytron’s algorithm used in LLVM.

5.4 SSA Reconstruction

Some transformations insert additional assignments that can break the static single assign-

ment property of the control flow graph. This can happen in transformations that duplicate

blocks or instructions (such as loop unswitching and jump threading). Figure 5.41 demon-

strates this problem. The condition (x3 = 0) is known to be true when control flow enters

from block a, and as the target of a’s successor is statically known, a can instead jump

there directly. To maintain semantic equivalence, the block a must assign x3 so the use of

the register later in execution is well-defined. While there is no semantic problem with the

resulting control flow graph, it defines x3 in two distinct instructions and breaks the static

single assignment property. To maintain this property, the new assignment of x3 must be

given a unique name, a ϕ-node must be inserted at the new join point, and all successive

uses of x3 must be rewritten.

Braun’s algorithm has immediate applicability in SSA reconstruction after modification

71

of the control flow graph. Transformations that clone instructions will inevitably duplicate

an assignment, breaking the static single assignment property. This property can be repaired

by rewriting all duplicate assignments to use fresh variables, then rewriting the uses of the

original variables to refer to the correct reaching definition. A key procedure in Braun’s

algorithm is able to rewrite uses exactly in this manner. This algorithm is later formalized

in Chapter 7 as part of loop-closed SSA form reconstruction, but we explain the intuition of

the algorithm here.

Braun’s algorithm takes as input register r assigned multiple times in the program, a

set of definitions R, and a set of uses U . Then, each occurrence of register r in a use in U

is replaced with the reaching definition of a register defined by some definition in D. It is

expected that the definitions in D are rewritten to assign to fresh registers (with no uses)

before application of this procedure. This ensures that register r no longer breaks the single

assignment property and that all previous uses of register r instead use the nearest logical

definition. It is also assumed that the set of definitions D dominate each use in U such that

there is no path from the entry of the program to a use in U that does not pass through

some definition in D.

The bulk of this algorithm requires finding the reaching definition of register r with

respect to a use u. This definition will either be a definition in the set D, or will be a

freshly inserted block parameter used to disambiguate multiple reaching definitions (in the

case where the set of paths from the entry of the program to the use passes through multiple

definitions). There are two simple cases to determine the reaching definition for a use u.

First, if a definition in D occurs before u in the same block, then the last such definition

is the reaching definition (as any earlier definition is killed by the later one). Second, if

the block containing u has only one predecessor, then the reaching definition is the reaching

definition of the predecessor block.

72

branch d()

r1 ← . . .
branch c()

r2 ← . . .
r3 ← . . .

branch c()

switch p false 7→ f() e()

branch f()

· · · ← r
branch d()

a()()
b()()

c()()

d()()

e()()

f()()

branch d(t3)

r1 ← . . .
branch c(x1)

r2 ← . . .
r3 ← . . .

branch c(r3)

switch p false 7→ f() e()

branch f()

· · · ← t2
branch d(t1)

a()()
b()()

c(t3)()

d(t2)()

e()()

f(t1)()

branch d(t3)

r1 ← . . .
branch c(x1)

r2 ← . . .
r3 ← . . .

branch c(r3)

switch p false 7→ f() e()

branch f()

· · · ← t2
branch d(t2)

a()()
b()()

c(t3)()

d(t2)()

e()()

f()()

Figure 5.42: A control flow graph in broken SSA form (left) can be rewritten so that the use
of r is replaced with the correct reaching definition of the register set {r1, r2, r3} (right). The
middle graph shows the progress of the algorithm before t1 is discovered to be unnecessary.
The uncommitted (but referenced) block argument is shown in gray.

The general case to determine the reaching definition is a bit more involved, especially

in the presence of loops. Let b denote the block containing u. If all of b’s predecessors have

the same reaching definition, then the reaching definition for b is unambiguous. Otherwise,

multiple reaching definitions must be disambiguated based on path, and a block parameter

is added to b, and the parameter for each predecessor is its own reaching definition.

Unfortunately, this recursive search does not halt within a loop. To remedy indefinite

recursion, the parameter is added to block b before determining the reaching definitions of

b’s predecessors. During search, this block parameter is used as the reaching definition of b

and breaks the recursion on that path. Unfortunately, eagerly adding block parameters will

add parameters when it is not necessary. If the set of reaching definitions for a block contains

only one unique register apart from its own block parameter, then the block parameter is

unnecessary and can be removed (and any references to the block parameter found via an

interim search can be rewritten to be the actual reaching definition of the block).

73

This algorithm is demonstrated in Figure 5.42, which rewrites the use of register r in

block f with the correct reaching definition of the register set {r1, r2, r3}, where register

R1 is defined in block a, and registers r2 and r3 are defined in block b. The algorithm begins

in block f , which has multiple predecessors and contains no assignment to a register in

{r1, r2, r3}. The reaching definition of block f is speculated to be the fresh register t1 while

the reaching definition of the block’s predecessors are determined. Similarly, the reaching

definitions of blocks d and c are speculated to be t2 and t3, respectively. The reaching

definitions of block a and block b are r1 and r3 (notice that the assignment to r3 kills the live

range of r2). To disambiguate the multiple definitions reaching block c, the block parameter

defining t3 is committed with arguments r1 and r3. Similarly, t2 is committed to block d

with arguments t3 and t1. The definitions reaching block f are both t2 (through d directly

and e indirectly). This makes the speculative register t1 unnecessary. Prior uses of t1 must

be replaced by t2. One such occurrence is the argument from block f to block c. Finally, the

use of r can be replaced by the sole reaching definition t2. After discarding the definition

of t1, the block parameter t2 becomes trivial. Such arguments can be pruned by iteratively

applying a local criteria: if the arguments to some parameter r contains only r and a single

value o ̸= r, then r can be replaced by o. This may additionally make other arguments

trivial.

74

6 Transformations

A transformation of a function f is a relation of the form

(f,D,HF , LF , XF)
T−→
P

(fout, Dout, Hout, Lout, Xout)

where T is an identifier and P is a set of parameters that may control the part of the function

that is transformed. Along with f , the transformation takes a dominator tree D and a loop

nesting forest F deconstructed into the triple (HF , LF , XF) (as described in Section 2.6.3)

as input. Unless otherwise stated, we assume that D = Df is the correct dominator tree

and F = Ff is the correct loop nesting forest for the input function. Unfortunately, this

cannot always be the case as some transformations are called recursively over sections of

the control flow graph (leaving each step in a locally-repaired but globally-broken state).

When this convention is broken the relationship between the function and the structure will

be described explicitly. A transformation outputs, symmetrically, a modified function, a

dominator tree Dout, and the elements of a triple (Hout, Lout, Xout) from which a loop nesting

forest Fout may be reconstructed.

6.1 Notation

Let T−→
A

∗
denote the repeated application of transformation T using each argument ai ∈ A,

defined as follows. It is assumed that the output of the sequence of transformations are

independent of the order of application.

O is an arbitrary ordering of A |O| = n Si
T−→
Oi

Si+1

S0
T−→
A

∗
Sn

75

Let b[c/c′] denote the block obtained by replacing all occurrences of the component c with

c′ in block b, let b[r/r′] denote the block obtained by replacing all occurrences of the register

r with r′ in block b, and let p[f/f ′] denote the program obtained by replacing all occurrences

of the function f with f ′ in p.

We extend this notation to a substitution set σ = {(c1, c′1), . . . , (cn, c′n)} such that X[σ]

expands to X[c1/c′1][. . .][cn/c′n]. In a slight abuse of notation, we define lookup on substitutions

to behave as follows. Simply, lookup returns the mapped value if the queried value exists in

the substitution and returns the queried value otherwise.

σ(c) =


c′ (c, c′) ∈ σ

c otherwise

Let D[b1 7→ b2] denote the tree in which lab(b1) is made a child of lab(b2) in D. Let

D[b1 7→ b2 : P] denote D[b1 7→ b2] when the predicate P holds and denote D otherwise. Let

D[b1 7→ b2 | P] denote the application of the set of assignments {b1 7→ b2 | P} in arbitrary

order to D. This notation is extended to the structures H and L as follows.

H[b1 7→ b2] = H \ {(ℓ1, ℓ2) ∈ H | lab(b1) = ℓ1} ∪ {(lab(b1), lab(b2))}

L[b 7→ l] = L \ {(ℓ1, ℓ2) ∈ L | lab(b) = ℓ1} ∪ {(lab(b), lab(l))}

6.2 Theorems

We define the following six theorems over transformations in order to show that they main-

tain properties of the control flow graph incrementally. Names of components bound in

these proof prototypes (and the corresponding templates) will use the subscript t to reduce

ambiguity between use of names in the proof and use of names in the specific transformation

for which they are proving a property.

76

6.2.1 Symmetric Evaluation

First, we state that no transformation alters the observable semantics of a function when

given the same input contexts and parameters.

Theorem Prototype 6.2.1. Assume p | f is well-typed. If f can be evaluated n steps with

some register context, memory context, nondeterminism state, and effects list, then fout can

be evaluated for n′ steps with the same initial context and arguments (replacing references

of f with fout) and reach a state with the same memory context, nondeterminism state, and

a similar effects list (and vice versa). More formally, for any register context γ, memory

context µ, nondeterminism state ν, effects list Ψ, and function arguments ⟨vti⟩ for which

there exists the following n-step evaluation sequence

(p | γ | µ | ν | Ψ; f(vti))→n
ρ (⟨p, ft1 , bt1⟩ | γ1 | µ′ | ν ′ | Ψ′; st1)

there exists the following n′-step evaluation sequence

(p[f/fout] | γ | µ | ν | Ψ; fout(vti)→n′
(⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | ν ′ | Ψ′; st2)

for some integer n′, some function ft2 , some block bt2 , some register context γ2 and some

instruction stream st2 . In the other direction, for any register context γ, memory context µ,

nondeterminism state ν, effects list Ψ, and function arguments ⟨vti⟩ for which there exists

the following n′-step evaluation sequence

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

ρ′ (⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | ν ′ | Ψ′; st2)

there exists the following n-step evaluation sequence

(p | γ | µ | ν | Ψ; fout(vti)→n (⟨p, ft1 , bt1⟩ | γ1 | µ′ | ν ′ | Ψ′; st1)

for some integer n, some function ft1 , some block bt1 , some register context γ1, and some

instruction stream st1 .

77

r1 ← 1
branch b(r1)

r3 ← addr(double)
r4 ← call(r3, r2)
r5 ← r4 < 10

switch r5 true 7→ e(r4) d(r4)

branch b(r6) return r7

r2 ← r1 × 2
return r1

a()

b(r2)

c(r6) d(r7)

e(r1)

Figure 6.21: A simple two-function graph. Block a is the entry to an unnamed function and
block e is the entry to a function called double.

Evaluation Path We use the subscript ρ, as written above, to represent the path of

evaluation of function f up to step n. This ordered sequence contains an element for each

time an instruction is evaluated where a control branches to another block. Each element

contains the component that caused the transfer of control (terminators and non-intrinsic

function calls) and the target block. For example, we refer to Figure 6.21. In this example,

the eleventh step of evaluation starting at block a (in which control is transferred to block e

for the second time) has the following six-element evaluation path.

⟨(⟨f1, a, branch b(r1)⟩, ⟨f1, b⟩), (⟨f1, b, r4 ← call(r3, r2)⟩, ⟨f2, e⟩),

(⟨f2, e, return r1⟩, ⟨f1, b⟩), (⟨f1, b, switch r5 true 7→ e(r4) d(r4)⟩, ⟨f1, c⟩),

(⟨f1, c, branch b(r6)⟩, ⟨f1, b⟩), (⟨f1, b, r4 ← call(r3, r2)⟩, ⟨f3, e⟩)⟩

When a value is pushed onto a return context, it may be annotated with the current

evaluation path (e.g. ⟨f, b, r, s⟩ρ). This freezes the evaluation path with respect to the func-

tion f , the block b, and the stream that leads to the instruction sequence s. We use the

subscript ρ′ similar for evaluation of function fout up to step n′. Construction of these paths

is trivial during evaluation.

These sequences will play a crucial part in deterministically defining equivalent struc-

tures for pre- and post-transformation programs. For example, the equivalent block after

78

jump simplification can be either the original block or the clone, depending on whether

or not control flow involves a particular predecessor. Using evaluation paths breaks such

ambiguities.

Function References We make the assumption that the bit patterns of function reference

values within programs p and p[f/fout] are consistent such that the bit pattern for value ref f

in p is shared with the bit pattern for the value ref fout in p[f/fout], and any function that

exists in both programs shares the same bit pattern in both programs. This allows us to omit

the substitution of ref f with ref fout in register contexts and effects list, as both structures

would be identical before and after such a substitution is applied. This also allows us to

read and write function reference values to and from a memory context without requiring

an additional consistent translation.

Function Cloning For each clone of a function in p there is a symmetric clone in p[f/fout].

We describe this specifically in two cases (simple case first). Consider the function f ′ ∈ p

where f ′ ̸= f . First, as f ′ ∈ p[f/fout] and as clones only need to be fresh within the context

of one evaluation, using the same clone in a parallel evaluation has no effect and the same

clone can be used in both an evaluation of a function in program p and a function in

program p[f/fout]. Now, consider a clone of function f called f ′. A similar clone of fout can

be constructed by first replacing all occurrences of register r with register r′ where r was

replaced by r′ in the construction of f ′, then replacing all remaining registers of fout with

fresh registers (as normal). Functions with such relationships will be referenced as similar.

We make the assumption that a clone of a function created in one evaluation is chosen so

that no fresh register conflicts with the parallel evaluation. For example, a clone of f must not

be chosen such that it contains a ‘fresh’ register that was introduced by the transformation

to fout. Intuitively, any such violating clone can be replaced by a non-violating clone without

79

further affecting these proofs. We denote the mapping from registers of f to registers of f ′

by the substitution set −→σf ′ such that f ′ ∈ C(f) and f is the uncloned function. When used

in the proof appendices, we extend this idea so that the mapping may include entries for

fresh registers introduced by a transformation. As these registers are not otherwise used in

the original function, these map to an arbitrarily chosen stable register.

We further abuse notation by extending the meaning of C for registers. Let r be a register

defined within function f . Then, we use C(r) to denote the infinite set of registers which

are symmetric to register r in all clones of function f . Because registers are chosen for

function clones such that they do not conflict with exiting (or future) register spaces, each

such infinite set of registers may be unique from any other relevant register when necessary.

Notes for Proof Structure Proving this theorem for a particular transformation is done

by induction over the number of steps of evaluation: n in the forward case and n′ in the

reverse case. Large chunks of these proofs are very similar, so we define a templated high-level

proof in the appendix to this chapter, Template 6.A.1, containing slots that are filled in with

details for a specific transformation. Additionally, the theorem as stated is too weak to prove

inductively, but a stronger one cannot be stated that holds for all transformations. Each

transformation must define a strengthened form of the theorem such that there exists some

relation between ft1 and ft2 , bt1 and bt2 , γ1 and γ2, and st1 and st2 . This allows (n + 1)-th

step of evaluation to flow directly from the n-th step of evaluation of f and a symmetric

(n′ + 1)-th step of evaluation to flow directly from a symmetric n′-th step of evaluation of

fout.

Each transformation will also define a binary relation trans between functions, blocks,

and streams in the evaluation of f and the symmetric element in the evaluation of fout.

80

This relation, in part, defines the strengthened induction. As the bulk of this transla-

tion is consistent across transformations, we provide the following as a template. Por-

tions of these relations may be rewritten when necessary. However, all refined transla-

tions must retain the property that if the functions and blocks conform to the relationships

ft2 = trans(ft1) and bt2 = trans(⟨ft1 , bt1⟩), then the streams conform to the relationship

stream(bt2) = trans(⟨ft1 , bt1 , bt1⟩).

transρ(ft) =


fout[
−→σft] ft ∈ C(f)

ft otherwise

transρ(⟨ft, bt⟩) = bt

transρ(⟨ft, bt, (st, ŝt)⟩) = st, transρ(ŝt)

transρ(⟨ft, bt, rt, st⟩ρ′) = ⟨transρ′(ft), transρ′(bt), rt, transρ′(⟨ft, bt, st⟩)⟩

transρ(ϵ) = ϵ

The subscript denoting the relevant evaluation path may be omitted when it is not useful

in a particular transformation and, as it does not need to be explicitly maintained during

evaluation, does not appear elsewhere in the proof. For induction in the reverse direction,

trans−1 translates certain elements of function fout into the symmetric element of f and may

also be rewritten when necessary. The default relations for the inverse are identical to the

cases above.

6.2.2 Structural Theorems

The remaining theorems, defined below, state that transformations maintain canonical form,

the well-typed property, the dominator tree, and the loop nesting forest of the function that

undergoes the transformation. These properties trivially compose as well. Many transfor-

mations may not always require each precondition (in which case they may be omitted in

81

the proof statement).

Theorem Prototype 6.2.2. If f is in canonical form, then fout is in canonical form.

Theorem Prototype 6.2.3. If f is in LCSSA form, then fout is in LCSSA form.

Theorem Prototype 6.2.4. If p | f is well-typed and f is in SSA form, then p[f/fout] | fout

is well-typed.

Theorem Prototype 6.2.5. The unique dominator tree of Gfout is Dout.

Theorem Prototype 6.2.6. If f is in canonical form, then Fout reconstructed from the

triple (Hout, Lout, Xout) is the unique loop nesting forest of Gfout .

We also make the following observation in order to simplify the proofs that types are

preserved after a transformation.

Lemma 6.2.7. If f : t and fout : t, then p f ′ | Γ ⊢ s and p[f/fout] f ′ | Γ ⊢ s have the same

derivation tree.

Proof. The program parameter of a typing derivations is used only to determine the types

of function references, which do not change between p and p[f/fout].

Corollary 6.2.8. By Lemma 6.2.7, it follows that in order to prove Theorem Prototype 6.2.4

it is sufficient to show that if p | f is well-typed and f is in SSA form, then p | fout is well-

typed.

82

Appendix

6.A Proof Template for Maintenance of Evaluation

In this section, we supply a proof template to show that the semantics of a function which

has undergone a transformation of the following form does not change.

(f,Df , HFf
, LFf

, XFf
) −→ (fout, Dout, Hout, Lout, Xout)

Theorem Template 6.A.1. Assume p | f is well-typed. If f can be evaluated n steps with

some register context, memory context, nondeterminism state, and effects list, then fout can

be evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

See Theorem Prototype 6.2.1 for the full theorem statement and additional assumptions

made about the process of evaluation.

Proof. We prove by induction on n in the forward case and on n′ in the reverse case.

→ Forward Case: The following relationships between the resulting functions, blocks,

and streams after a step of evaluation of f and a parallel step of evaluation of fout.

ft2 = transρ(ft1) bt2 = transρ(⟨ft1 , bt1⟩) st2 = transρ(⟨ft1 , bt1 , st1⟩)

[Slot → Refinement] Each transformation refines the trans relation such that the func-

tions, blocks, streams, blocks, and return contexts referenced by the evaluation of f can be

83

translated into symmetric values referenced by the evaluation of fout. Each transformation

also places an additional restriction on the register contexts (e.g. ensuring that registers have

the same value if defined or that a point of evaluation of fout defines a superset of registers

for any symmetric evaluation point in f).

[Slot → Invokability] For functions f and fout to be semantically equivalent, they must

be symmetrically invokable. Let ft1 ∈ C(f), entry(ft1) = bt1 , and dom(param(bt1) = ⟨rti⟩.

Then, a clone of function f is invokable with the following form.

→ρ (⟨p, ft1 , bt2⟩ | γ1[rti 7→ vti] | µ | ν | Ψ; stream(bt1)), ŝt1)

Let ft2 = fout[
−−→σft1], entry(ft2) = bt2 , and dom(param(bt2) = ⟨r′ti⟩. Then, each transfor-

mation must show that given the following invocation, there exists a sequence of zero or

more steps that brings the following evaluation of fout to a state where the function, block,

streams, and register contexts are consistent with the strengthened induction.

→ (⟨p[f/fout], ft2 , bt2⟩ | γ2[r′ti 7→ vti] | µ | ν | Ψ; stream(bt2), trans(ŝt1))

→ Base Case (n = n′ = 1): The base case is trivially implied by [Slot Invokability] where

ρ = ⟨⟩ and γ1 = γ2 = ∅.

→ Inductive Step: We assume a non-terminal n-step evaluation of f and a parallel n′-step

evaluation of fout consistent with the strengthened induction. We show that if evaluation

of f can make a step of progress, then evaluation of fout can progress zero or more steps

to reach a point that is consistent with the strengthened induction. The (n + 1)-th step

of evaluation of f must be possible according to Theorem 3.A.10, as the stream st1 is both

non-terminal and, by assumption, well-typed with respect to its register context.

84

Asymmetric Evaluation We first consider the cases where the n-th step of evaluation

of f and the n′-th step of evaluation of fout diverge as evaluation of fout has entered an area

of the function which was modified by the transformation.

[Slot → Asymmetric Evaluation] Each transformation must show that for every pair

of stream locations which can occur on the n-th step of evaluation of f and a parallel n′-th

step of evaluation of fout, the evaluation of fout can progress to a point that is consistent

with the strengthened induction defined by [Slot Refinement] with respect to the (n+ 1)-th

step of evaluation of f .

Symmetric Evaluation Now, we consider the remaining cases where the next steps of

progress occur symmetrically such that both evaluations make a step of progress with the

same evaluation rule. Assume there exists an n-step evaluation of f with the following form.

(p | γ | µ | ν | Ψ; f(vti))→n
ρ (⟨p, ft1 , bt1⟩ | γ1 | µ′ | ν ′ | Ψ′; st1 , ŝt1)

→ (⟨p, f ′t1 , b
′
t1
⟩ | γ′1 | µ′′ | ν ′′ | Ψ′′; s′t1)

By our strengthened inductive hypothesis, the n′-th step of evaluation of fout stops with

symmetric instruction stream, as shown below, such that γ1 and γ2 are consistent with the

strengthened induction defined by [Slot Refinement]. Here, ft2 = transρ(ft1).

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′
(⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | ν ′ | Ψ′; st2 , ŝt2)

After the exhaustion of the asymmetric cases in [Slot Asymmetric Evaluation], the remaining

cases must obey the following relationships.

transρ(ft) = ft transρ(⟨ft, bt⟩) = bt transρ(⟨ft, bt, (st, ŝt)⟩⟩ = st, trans(ŝt)

((r, cv) ∈ γ1 =⇒ (r, cv) ∈ γ2) for every register r ∈ defsf (bt1) ∪ usesf (bt1)

ŝt2 = (trans(f ′t1), trans(⟨f ′t1 , b
′
t1
⟩), r, trans(s′t1)) if ŝt1 = (f ′t1 , b

′
t1
, r, s′t1)

85

We can then offload the work of proving symmetric evaluation onto five common lemmas

defined in Section 6.B. One such lemma can be applied to the n-th and (n + 1)-th steps of

evaluation of f and the n′-th step of evaluation of fout given that the following conditions

hold: stream st1 and trans(⟨ft1 , bt1⟩, st1) have the same leading instruction or terminator;

every register in the leading component of st1 has the same value in γ1 and γ2; blocks

param(blockf (ℓb)) = param(blockfout(ℓb)) when control transfers to blockf (ℓb); and functions

f and fout have identical entry block parameters, or f cannot be called from this callsite.

The first two conditions are true by the assumed relationships between streams and register

contexts. The following conditions are assumed to be true as the transfer of control to a

modified block and a call to the transformed function in which the parameters of the entry

block are modified are considered asymmetric cases and were covered previously.

Now, we show that the (n′+1)-th step of evaluation of fout resulting from application of

one of the five symmetric evaluation lemmas is consistent with the strengthened induction

(with respect to the (n + 1)-th step of evaluation of f) defined by [Slot Refinement]. Ap-

plication of any of these lemmas allows us to bound the parallel relationships between step

n/(n+ 1) and step n′/(n′ + 1)’s functions, blocks, register context, and streams as follows.

Symmetric Instructions By application of Lemma 6.B.1, the functions and blocks move

in identical fashion: f ′t1 = ft1 , f ′t2 = ft2 , b′t1 = bt1 , and b′t2 = bt2 . The input and output

functions are equivalent, as are the input and output blocks and return contexts. As the

input functions, blocks, and return contexts were consistent with the strengthened induction,

so are the output functions, blocks, and return contexts. The resulting streams are either

the input streams with their head elements removed or both ϵ. In the former case, the tails

of both streams remain consistent with the strengthened induction as the input streams are

equivalent and consistent with the strengthened induction. In the latter case, ϵ streams are

86

consistent with the strengthened induction as the translation of empty streams and empty

return contexts are unrefined for all transformations described in this work.

Symmetric Function Call We discuss the result of the application of Lemma 6.B.2.

First, we consider the case where f ′t1 ∈ C(f). Then, f ′t2 ∈ C(fout) by translation, and

slot [Slot Invokability] shows how additional steps of progress can be taken to advance the

evaluation of fout. In all other cases, the resulting functions and blocks are equivalent (by

exhaustion of the asymmetric cases). Then, the resulting blocks and their unmodified streams

are consistent with the strengthened induction.

Symmetric Branch By application of Lemma 6.B.3, f ′t1 = ft1 and f ′t2 = ft2 . The input

and output functions are equivalent, as are the input and output return contexts. As the

input functions and return contexts were consistent with the strengthened induction, so are

the output functions and return contexts. The resulting blocks share the same label and are

equivalent in both functions (by exhaustion of the asymmetric cases). Then, the resulting

blocks and their unmodified streams are consistent with the strengthened induction.

Symmetric Return (Non-Empty) By application of Lemma 6.B.4, ŝt1 has the form

⟨f ′t1 , b
′
t1
, r, s′t1⟩ and ŝt2 has the form ⟨f ′t2 , b′t2 , r, s′t2⟩. By assumption, the functions, blocks,

streams, and resulting return contexts are consistent with the strengthened induction.

Symmetric Return (Empty) By application of Lemma 6.B.5, f ′t1 = ft1 , f ′t2 = ft2 ,

b′t1 = bt1 , and b′t2 = bt2 . As stated in the first case, these components continue to be

consistent with the strengthened induction. Again, empty streams are consistent with the

strengthened induction as the translation of empty streams is unrefined by assumption.

After application of any lemma, register contexts are constrained such that both of the

87

following conditions hold for some (possibly empty) set of registers {ri} and a matching set

of values {vi}.

γ′1 = γ1[ri 7→ vi] γ′2 = γ2[ri 7→ vi]

Simply, both register contexts gain a symmetric set of register-value pairs. As register

contexts γ1 and γ2 are consistent with the strengthened induction, the resulting contexts are

consistent with the strengthened induction as well (by exhaustion of the asymmetric cases,

which include the cases where the register relationship is otherwise constrained).

This concludes the forward case.

← Forward Case: The following relationships between the resulting functions, blocks,

and streams after a step of evaluation of fout and a parallel step of evaluation of f .

ft1 = trans−1ρ′ (ft2) bt1 = trans−1ρ′ (⟨ft2 , bt2⟩) st1 = trans−1ρ′ (⟨ft2 , bt2 , st2⟩)

[Slot ← Refinement] Each transformation refines the trans−1 relation such that the

functions, blocks, streams, blocks, and return contexts referenced by the evaluation of fout

can be translated into symmetric elements referenced by the evaluation of f . Again, each

transformation also places an additional restriction on the register contexts.

[Slot ← Invokability] Let ft2 ∈ C(fout), entry(ft2) = bt2 , and dom(param(bt2) = ⟨rti⟩.

Then, a clone of function fout is invokable with the following form.

→ρ′ (⟨p[f/fout], ft2 , bt2⟩ | γ2[rti 7→ vti] | µ | ν | Ψ; stream(bt2)), ŝt2)

Let ft1 = f [−−→σft2], entry(ft1) = bt1 , and dom(param(bt1) = ⟨r′ti⟩. Then, each transforma-

tion must show that given the following invocation, there exists a sequence of zero or more

88

steps that brings the following evaluation of f to a state where the function, block, streams,

and register contexts are consistent with the strengthened induction.

→ (⟨p, ft1 , bt1⟩ | γ1[r′ti 7→ vti] | µ | ν | Ψ; stream(bt1), trans−1(ŝt2))

← Base Case (n = n′ = 1): The base case is trivially implied by [Slot Invokability] where

ρ′ = ⟨⟩ and γ1 = γ2 = ∅.

← Inductive Step: We assume a non-terminal n′-step evaluation of fout and a parallel n-

step evaluation of f consistent with the strengthened induction. We show that if evaluation

of fout can make a step of progress, then evaluation of f can progress zero or more steps

to reach a point that is consistent with the strengthened induction. The (n′ + 1)-th step of

evaluation of fout must be possible according to Theorem 3.A.10 as the stream st2 is both

non-terminal and, by assumption, well-typed with respect to its register context.

Asymmetric Evaluation We first consider the cases where the n′-th step of evaluation

of fout and the n-th step of evaluation of f are diverge as evaluation of fout has entered an

area of the function which was modified by the transformation.

[Slot ← Asymmetric Evaluation] Each transformation must show that for every pair

of stream locations which can occur on the n′-th step of evaluation of fout and a parallel n-th

step of evaluation of f , the evaluation of f can progress to a point that is consistent with to

the strengthened induction defined by [Slot Refinement] with respect to the (n′ + 1)-th step

of evaluation of fout.

Symmetric Evaluation This section mirrors the forward case (with elements related to

functions f and fout in the opposite position).

89

This concludes the reverse case and the proof template.

6.B Symmetric Evaluation

The following five lemmas, referenced heavily by Template 6.A.1, perform the bulk of the

work in proving that an unaffected segment of the program maintains its semantics after

transformation.

Each lemma assumes that two functions, f and fout, are being evaluated in parallel.

While these names imply fout is the result of a transformation of f , this is not necessarily

the case (it is true when applied in the forward case of Template 6.A.1, but untrue when

applied in the reverse case).

6.B.1 Symmetric Instructions

The first lemma shows that symmetric evaluation of streams up to a point where they lead

with the same instruction, excluding non-intrinsic function calls, can make steps of evaluation

similar to one another. This requires additionally that both register contexts γ1 and γ2 cause

the instruction to produce the same result.

Lemma 6.B.1. Assume there exists an (n+1)-step evaluation of f with the following form.

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt1⟩ | γ1 | µ′ | ν ′ | Ψ′; I, st1)

→ (⟨p, ft1 , bt1⟩ | γ′1 | µ′′ | ν ′′ | Ψ′′; s′t1)

If there exists an n′-step evaluation of function fout symmetric to the first n steps of the

evaluation of f , p[f/fout] | fout is well-typed, and γ2(e) = γ1(e) for every expression e that

occurs in I, then an (n′ + 1)-th step of evaluation of function fout exists with the following

90

form.

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′
(⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | ν ′ | Ψ′; I, st2)

→ (⟨p[f/fout], ft2 , bt2⟩ | γ′2 | µ′′ | ν ′′ | Ψ′′; s′t2)

Additionally, each statement below holds for some register r defined by I and some value v.

• s′t1 = st1 and s′t2 = st2 , or s′t1 = s′t2 = ϵ

• γ′1 = γ1 and γ′2 = γ2, or γ′1 = γ1[r 7→ v] and γ′2 = γ2[r 7→ v]

Proof. We prove by case analysis on st1 . Unless otherwise stated, assume that γ′1 = γ1,

γ′2 = γ2, µ′′ = µ′, ν ′′ = ν ′, and Ψ′′ = Ψ′.

Case (r ← move(e), s′). The (n + 1)-th step of evaluation of f follows by application of

rules E-Inst and E-Move such that s′t1 = st1 and γ′1 = γ1[r 7→ γ1(e)]. Symmetrically, the

(n′+1)-th step of evaluation of fout follows by the same rules (by Theorem 3.A.10) such that

s′t2 = st2 and γ′2 = γ2[r 7→ γ1(e)[ref /ref fout]] as γ2(e) = γ1(e) by assumption.

Case (r ← ⊕(ei), s′). We first handle the non-abnormal step of evaluation. The (n+1)-th

step of evaluation of f follows by application of rules E-Inst and E-Operator such that

s′t1 = st1 and γ′1 = γ1[r 7→ v]. Symmetrically, the (n′+1)-th step of evaluation of fout follows

by the same rules (by Theorem 3.A.10) such that s′t2 = st2 and γ′2 = γ2[r 7→ v]. Notice that

as the operators are defined over only integer and boolean values, so the value v is yielded

with respect to either register context γ1 or γ2. We now handle the division by zero case.

The (n + 1)-th step of evaluation of f follows by application of rule E-Div-Abnormal

such that s′t1 = ϵ and Ψ′′ = Ψ′, halt(ex(math err)). Symmetrically, the (n′ + 1)-th step

of evaluation of fout follows by the same rule (by Theorem 3.A.10) such that s′t2 = ϵ and

Ψ′′′ = Ψ′, halt(ex(math err)).

91

Case (r ← addr(ℓ), s′). First, suppose ℓ refers to a function ft ∈ p. Let f ′t = ft if ft ̸= f

and let f ′t = fout otherwise. Notice that f ′t ∈ p[f/fout]. The (n + 1)-th step of evaluation of

f and the (n′ + 1)-th step of evaluation of fout follow by application of rules E-Inst and

E-Addr such that s′t1 = st1 , s′t2 = st2 , γ′1 = γ1[r 7→ ref ft], and γ′2 = γ2[r 7→ ref f ′t].

Now, suppose ℓ refers to an intrinsic f̂ which is addressable by both program p and p[f/fout].

The (n + 1)-th step of evaluation of f and the (n′ + 1)-th step of evaluation of fout follow

by application of rules E-Inst and E-Addr-Intrinsic such that s′t1 = st1 , s′t2 = st2 ,

γ′1 = γ1[r 7→ ref f̂], and γ′2 = γ2[r 7→ ref f̂].

Case (r ← load«t»(e), s′). By inversion of rule T-Load, e is an integer value with respect

to both register contexts and γ1(e) = γ2(e) = v. First, suppose v′ = µ′(v,width(t)) suppose

is interpretable as a value of type t with respect to program p. The (n + 1)-th step of

evaluation of f follows by application rules E-Inst and E-Load such that s′t1 = st1 and

γ′1 = γ1[r 7→ v′]. As the widths of each type can be made the same in program p and

p[f/fout], v′ = µ′(v,width(t)) is interpretable as a value of type t with respect to program

p[f/fout]. Then, the (n′ + 1)-th step of evaluation of fout follows symmetrically by the same

rules (by Theorem 3.A.10) such that s′t2 = st2 and γ2[r 7→ v′]. Now, suppose µ′(v,width(t))

cannot be interpreted as a value of type t with respect to program p. Then, the (n + 1)-th

step of evaluation of f and the (n′ + 1)-th step of evaluation of fout follow by application of

rule E-Load-Abnormal such that s′t1 = ϵ and s′t2 = ϵ, and Ψ′′ = Ψ′, halt(ex(mem err))

and Ψ′′′ = Ψ′, halt(ex(mem err)).

Case (r ← store(e1, e2), s′). By inversion of rule T-Load, e1 is an integer value with

respect to both register contexts and γ1(e1) = γ2(e1) = v. Additionally, the values γ1(e2)

and γ2(e2) are necessarily representable by the same length w bitpattern. First suppose that

v ≥ 0. Then, the (n+ 1)-th step of evaluation of f and the (n′ + 1)-th step of evaluation of

92

fout follow by application of rules E-Inst and E-Store such that s′t1 = st1 , and s′t2 = st2 ,

γ′1 = γ1[r 7→ unit] and γ′2 = γ2[r 7→ unit], and µ′ = µ[v 7→ γ1(e1)]. Now, suppose v < 0.

Then, the (n + 1)-th step of evaluation of f and the (n′ + 1)-th step of evaluation of fout

follow by application of rule E-Store-Abnormal such that s′t1 = ϵ and s′t2 = ϵ, and

Ψ′′ = Ψ′, halt(ex(mem error)) and Ψ′′′ = Ψ′, halt(ex(mem err)).

Case (r ← call(e0, ei), s′). As the (n+ 1)-th step of evaluation of f remains in the same

function and block, it must be the case that γ1(e0) = γ2(e0) = f̂ . In the non-halting case,

let f̂(µ′, ν ′, γ1(ei)) = (µ′′, ν ′′, v). Notice that as γ2(ei) = γ1(ei). In the abnormal intrinsic

case, the (n + 1)-th step of evaluation of f and the (n′ + 1)-th step of evaluation of fout

follow by application of rule E-Intrinsic-Abnormal such that s′t1 = ϵ and s′t2 = ϵ, and

Ψ′′ = Ψ′, f̂(γ1(ei)), halt(ex(err)) and Ψ′′′ = Ψ′, f̂(γ2(ei)), halt(ex(err)).

6.B.2 Symmetric Function Calls

This next lemma proves a similar condition for evaluation of calls to non-intrinsics. This

requires the same consistency condition for registers contexts γ1 and γ2 as well as requiring

that the entry block of the target function has the same parameters in the evaluation of both

functions f and fout.

Lemma 6.B.2. Assume there exists an (n+1)-step evaluation of f with the following form.

Let function f ′t ∈ p refer to the original target of the call instruction such that f ′t1 ∈ C(f ′t)

and b′t1 = entry(f ′t1).

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , bt1⟩ | γ1 | µ′ | ν ′ | Ψ′; r ← call(e0, ei), st1)→

(⟨p, f ′t1 , b
′
t1
⟩ | γ1[ri 7→ vi] | µ′ | ν ′ | Ψ′; stream(b′t1), ⟨ft1 , bt1 , r, st1⟩)

93

If there exists an n′-step evaluation of function fout symmetric to the first n steps of the

evaluation of f , p[f/fout] | fout is well-typed, γ2(e) = γ1(e) for every expression e that occurs

in the leading call instruction, and param(entry(f)) = param(entry(fout)) (unless function

f cannot be called from this callsite), then an (n′ + 1)-th step of evaluation of function fout

exists with the following form such that f ′t2 = f ′t1 when f ′t1 ̸∈ C(f), f ′t2 = fout[
−−→σf ′

t1
] when

f ′t1 ∈ C(f), and b′t2 = entry(f ′t2).

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | ν ′ | Ψ′; r ← call(e0, ei), st2)→

(⟨p[f/fout], f ′t2 , b
′
t2
⟩ | γ′2[ri 7→ vi] | µ′ | ν ′ | Ψ′; stream(b′t2), ⟨ft2 , bt2 , r, st2⟩)

Proof. As γ1(e0) = ref f ′t , γ2(e0) must be equal to either ref f ′t when f ′t ̸= f or ref fout

otherwise. In the former case, the params of the entry block of f ′t are identical in both

evaluations. In the latter case, the params of the entry blocks of f and fout are equal by

assumption. Then, the (n′ + 1)-th step of evaluation of fout follows from application of

rule E-Call. The target function is identical when the call does not target function f

(as identical registers can be chosen for a clone of the non-modified function), and is equal

to a clone of fout where all common registers are chosen to be identical as described in

Chapter 6.

6.B.3 Symmetric Branch

Now, we show that symmetric evaluation of streams up to a point where they lead with

the same terminator can make steps of evaluation similar to one another. We first cover

branching, which is conceptually similar to the case of calls to non-intrinsics.

94

Lemma 6.B.3. Assume there exists an (n+1)-step evaluation of f with the following form.

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt1⟩ | γ1 | µ′ | ν ′ | Ψ′; switch e cvi 7→ refi refd, ŝt1)

→ (⟨p, ft1 , b′t1⟩ | γ1[ri 7→ vi] | µ′ | ν ′ | Ψ′; stream(b′t1), ŝt1)

If exists an n′-step evaluation of function fout symmetric to the first n steps of the evalu-

ation of f (shown below), p[f/fout] | fout is well-typed, γ2(e) = γ1(e) for every expression

e that occurs in the switch terminator, and there is a block bt2 ∈ body(fout) such that

lab(b′t1) = lab(b′t2) and param(b′t1) = param(b′t2), then an (n′ + 1)-th step of evaluation of

function fout exists with the following form.

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | ν ′ | Ψ′; switch e cvi 7→ refi refd, ŝt2)→

(⟨p[f/fout], ft2 , b
′
t2
⟩ | γ2[ri 7→ vi] | µ′ | ν ′ | Ψ′; stream(b′t2), ŝt2)

Proof. Let ℓ(ei) be the block reference chosen by rules E-Case and E-Case-Default in

the evaluation of f . If γ1(e) is an integer or boolean value, then γ1(e) = γ2(e) and the same

block reference will be chosen by rule E-Case in the evaluation of fout. If γ1(e) is a block

reference or a unit value and the block reference was chosen by rule E-Case-Default as no

value cvi can match either of these values (syntax forbids function references and E-Case

forbids matching unit values). Then, γ2(e) is also one of these two types and the same block

reference is chosen by rule E-Case-Default. The (n′+1)-th step of evaluation of fout then

follows by application of rule E-Switch and Theorem 3.A.10.

6.B.4 Symmetric Return

Finally, we show the same for streams that return up the call stack. We split this statement

into the cases of streams with non-empty return context and streams with empty return

95

contexts. Purposefully absent is the case where one side is non-empty and the other is

empty, which is a very obvious non-symmetry.

Lemma 6.B.4. Assume there exists an (n+1)-step evaluation of f with the following form.

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt1⟩ | γ1 | µ′ | ν ′ | Ψ′; return e, ⟨f ′t1 , b
′
t1
, r, s′t1⟩)

→ (⟨p, f ′t1 , b
′
t1
⟩ | γ1[r 7→ v] | µ′ | ν ′ | Ψ′; s′t1)

If there exists an n′-step evaluation of function fout symmetric to the first n steps of the

evaluation of f , p[f/fout] | fout is well-typed and γ2(e) = γ1(e), then an (n′ + 1)-th step of

evaluation of function fout exists with the following form.

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | ν ′ | Ψ′; return e, ⟨f ′t2 , b
′
t2
, r, s′t2⟩)→

(⟨p[f/fout], f ′t2 , b
′
t2
⟩ | γ′2[r 7→ v | µ′ | ν ′ | Ψ′; s′t2)

Proof. Trivial by application of rule E-Return and Theorem 3.A.10.

Lemma 6.B.5. Assume there exists an (n+1)-step evaluation of f with the following form.

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt1⟩ | γ1 | µ′ | ν ′ | Ψ′; return e)

→ (⟨p, ft1 , bt1⟩ | γ1 | µ′ | ν ′ | Ψ′, halt(v); ϵ)

If there exists an n′-step evaluation of function fout symmetric to the first n steps of the

evaluation of f , p[f/fout] | fout is well-typed, and γ2(e) = γ1(e), then an (n′ + 1)-th step of

evaluation of function fout exists with the following form.

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | ν ′ | Ψ′; return e)→

(⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | ν ′ | Ψ′, halt(v); ϵ)

Proof. Trivial by application of rule E-Return-Last and Theorem 3.A.10.

96

6.C Common Lemmas

In this section we present a lemma that is used by several transformation proofs. This lemma

reduces the boilerplate, showing that a parallel step of evaluation can be taken in functions

f and fout if an instruction is evaluated and the streams differ only by the terminator.

Lemma 6.C.1. Assume there exists an (n+1)-step evaluation of f with the following form

for which predicate P is true.

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt1⟩ | γ1 | µ′ | ν ′ | Ψ′; I, st1)

→ (⟨p, ft1 , bt1⟩ | γ′1 | µ′′ | ν ′′ | Ψ′′; s′t1)

Let function f and fout relate via a particular transformation. Let this transformation refine

the translation of streams with the existence of the following property for some predicate P ,

and assume the translation of empty streams and empty return contexts are unrefined.

trans(⟨ft, bt, ((s′t, Tt), ŝt)⟩) =


(s′t, T [

−→σft]), trans(ŝt) P

...

Additionally, let this transformation define the relationship between register contexts such

that ((r, cv) ∈ γ1 =⇒ (r, cv) ∈ γ2) for every register r ∈ defsf (bt1) ∪ usesf (bt1). Then,

if there exists an n′-step evaluation of function fout symmetric to the first n steps of the

evaluation of f , p[f/fout] | fout is well-typed, then an (n′+1)-th step of evaluation of function

fout exists that is consistent with the strengthened induction.

Proof. By application of Lemma 6.B.1, the resulting blocks are the same as the input

blocks, which are consistent with the strengthened induction by assumption, and the re-

sulting streams are either the input streams with their head elements removed or both ϵ. In

the former case, the tails of both streams remain consistent with the strengthened induction

97

by translation. In the latter case, ϵ streams are consistent with the strengthened induc-

tion by assumption. Additionally, the resulting register contexts either remain the same,

or are extended with the same register-value pair, which does not violate the strengthened

induction by assumption.

98

7 Canonicalization

A control flow graph can be canonicalized by manipulating the edges associated with a

canonical form property violation, as demonstrated in Figure 7.01. In this example, the

colored edges in the control flow graph violate a particular property of canonical form – the

blue edges (l1, h) and (l2, h) violate (Property 1); the red edges (p1, h) and (p2, h) violate

(Property 2); and the green edges (p2, e1) and (e2, e3) violate (Property 3). Empty blocks

l′ and h′ can be inserted respectively onto the blue and red edges to form a dedicated

preheader and a unique latch. The target of each green edge is an exit of the loop that

also has a predecessor outside of the loop. Empty blocks e′1 and e′2 can be inserted onto the

non-highlighted edges for each violating exit to form exits that have predecessors only in the

loop they exit.

Section 7.1 presents a transformation used to repair a set of definitions that violate the

single assignment property. Section 7.2 presents a transformation used to convert an SSA

control flow graph into an LCSSA control flow graph. Section 7.3 presents a transformation

h

p1 p2

b1

l1

l2

e1

e2

e3

h

h′

p1 p2

b1 l1

l2 l′

e1

e′1

e2

e3 e′2

Figure 7.01: A (very) non-canonical control flow graph and its canonical equivalent.

99

bout = b[param(b)/param(b)∪⟨(r : t)⟩]

b
add param−−−−−−→

(r : t)
bout

deff (r) ∈ b bout = b[ℓb′ (e)/ℓb′ (e,r) | b′ ∈ B where ℓb′ = lab(b′)]

b
add arg−−−−→
B,(r : t)

bout

deff (r) ̸∈ b b[ℓb′ (e)/ℓb′ (e,r) | b′ ∈ B where ℓb′ = lab(b′)] repair implicits−−−−−−−−→
{(r : t)},∅

bout

b
add arg−−−−→
B,(r : t)

bout

Figure 7.11: Inserting parameters to blocks and arguments to block references.

that places a fresh empty block at the end of the path shared by a set of edges. This trans-

formation modifies the number or source of predecessors of a particular block and is useful

in controlling the edges crossing loop boundaries. Section 7.4 presents transformations to

repair specific canonical form violations. Unlike the transformations discussed in Chapter 9,

canonicalization transformations do not assume that the input graph is already in canonical

form.

7.1 SSA Reconstruction

A set of register definitions breaking SSA form can be rewritten so that each definition writes

a uniquely named fresh register and all uses of the old register are replaced by the reaching

definition at the point of use. This general idea was discussed in Section 5.4.

We first define a set of necessary operations for inserting additional block parameters and

block reference arguments. These operations are formally defined in Figure 7.11 and should

be unsurprising. Adding a block parameter simply adds an additional typed register to the

100

bout = (lab(b), param(b), (implicit(b) \ P−) ∪ P+, stream(b))

b
repair implicits−−−−−−−−→

P+,P−
bout

Figure 7.12: Adding and removing values from the set of implicit block parameters.

b′ ∈ B

lab(b′) = lab(b) b′
add param−−−−−−→

(r : t)
bout

B
add param set−−−−−−−−→

b,(r : t)
B \ {b} ∪ {bout}

b′ ∈ B

lab(b′) = lab(b) b′
add arg−−−−→
B′,(r : t)

bout

B
add arg set−−−−−−→
b,B′,(r : t)

B \ {b} ∪ {bout}

Figure 7.13: Inserting parameters to blocks and arguments to block references identified by

a label.

existing parameter sequence. Adding an argument to a block reference simply appends an

expression to the tail of the reference’s arg list – if this expression is a register that is not

defined in block b, then the register must also be added to the set of b’s implicit parameters.

The add arg operation takes as input a set of blocks B in order to select the block references

to be modified. The repair implicits operation, defined in Figure 7.12, is applied when

references to new registers in a block or removing the last reference to a register from a

block.

Figure 7.13 defines the operations add param set and add argset. These operations

perform the same block transformations as add param and add arg, respectively, but instead

of working directly on a block b, it finds a block b′ from the set of blocks B with the same

label. The resulting set of blocks, Bout, is the set B with block b′ replaced by the transformed

block. These operations allow us to add a set of block parameters and associated arguments

to a program without the need to name intermediate blocks or sets of blocks.

SSA Reconstruction is performed by an operation that mirrors the rewrite uses algorithm

101

∀di ∈ deff (r) · typeoff (di) = t f = (ℓ, t, B, ℓ0) σR = {(di, ri) | di ∈ deff (r)}

ri is fresh σD = [(di, d
′
i) | di ∈ deff (r) where d′i = di[r/σR(di)]

R0 = Bϕ0 = ∅ (Ri−1, Bϕi−1
)

find def ↓−−−−−−−−−−−−−−−−→
{(u,deff (r)[σD])|u∈usef (r)}

∗
(Ri, Bϕi

) |usef (r)| = k

B[σD]
add param set−−−−−−−−−−−−−−→

{(bi,(ri : t))|(bi,ri)∈Bϕk
}

∗ add arg set−−−−−−−−−−−−−−−−−−−−−−→
{(bi,{bi},Rk(pi))|pi∈predf (bi)∧bi∈Bϕk

}

∗ replace register set−−−−−−−−−−−−−−−−−→
{u,(r : t),Ru

k (b)|⟨b,u⟩∈usef (r)}

∗
Bout

fout = (ℓ, t, B′, ℓ0) Dout = deff (r)[σD] ∪ {⟨bi, (ri : t)⟩ | (bi, ri) ∈ Bϕk
}

f
rewrite uses−−−−−−→

(r : t)
(fout, Dout)

b
imp def−−−−→
(r′ : t)

P+ b
imp use−−−−→
(r : t)

P− b[c/c[r/r′]]
repair implicits−−−−−−−−→

P+,P−
bout

b
replace register−−−−−−−−→
⟨b,c⟩,(r : t),r′

bout

b′ ∈ B lab(b′) = lab(b) b′
replace register−−−−−−−−→
⟨b,c⟩,(r : t),r′

bout

B
replace register set−−−−−−−−−−→

⟨b,c⟩,r,r′
B \ {b} ∪ {bout}

deff (r) ∈ b

b
imp def−−−−→
(r : t)

∅

deff (r) /∈ b

b
imp def−−−−→
(r : t)

{(r : t)}

|useb(r)|> 1

b
imp use−−−−→
(r : t)

∅

|useb(r)|= 1

b
imp use−−−−→
(r : t)

{(r : t)}

Figure 7.14: Rewriting uses of a register violating SSA form.

by Braun et al. [12] as discussed in Section 5.4. The differences here are mostly stylistic.

Instead of inserting ϕ-nodes, we insert block parameters and block reference arguments.

Instead of presenting the operation as pseudocode, we present it with inference notation to

conform to the remainder of this work. The only functional difference in the algorithms is

that the transformation presented here first replaces all definitions of a register r with a fresh

register. After the algorithm has finished, no reference to the original register r remains.

Figure 7.14 formally defines this transformation. First, we create a mapping σD that

replaces the definition of each register r with a fresh register. Then, we determine the

102

⟨f, b, d⟩ ∈ D d < c

d defines r Rout = R[b 7→c r]

(R,Bϕ)
find def ↓−−−−−→
⟨f,b,c⟩,D

(Rout, Bϕ)

⟨f, b, d⟩ ̸∈ D ∨ d ̸< c

(R,Bϕ)
find def ↑−−−−−→
⟨f,b⟩,D

(Rout, Bϕout)

(R,Bϕ)
find def ↓−−−−−→
⟨f,b,c⟩,D

(Rout, Bϕout)

Figure 7.15: Finding the nearest reaching definition from a set of definitions D from the

bottom of a block.

⟨f, b, d⟩ ∈ D ∨ (b, d) ∈ R d defines r Rout = R[b 7→ r]

(R,Bϕ)
find def ↑−−−−−→
⟨f,b⟩,D

(Rout, Bϕ)

⟨f, b, d⟩ ̸∈ D ∧ (b, d) ̸∈ R P = ⟨pi | pi ∈ predf (b)⟩ |P | = k

R0 = R[b 7→ r] Bϕ0 = Bϕ[b 7→ r] r is fresh

(Ri−1, Bϕi−1
)

find def ↑−−−−−−→
⟨f,pi∈P ⟩,D

(Ri, Bϕi
) (Rk, Bϕk

)
collapse params−−−−−−−−→

b,r
(Rout, Bϕout)

(R,Bϕ)
find def ↑−−−−−→
⟨f,b⟩,D

(Rout, Bϕout)

Figure 7.16: Finding the nearest reaching definition from a set of definitions D from the top

of a block.

reaching definition for each use of r, as well as the reaching definition for all blocks along

every path to the nearest definition of r. These definitions are yielded by the find def

procedure, discussed further below, in the form of two sets: Rk and Bϕk
. The set Rk is a

mapping from blocks to their reaching definition. Here, we use the following notation for

convenience: Rc
k(b) = d and (b 7→c d) ∈ Rk both denote a reaching definition for block b

that occurs before the component c. When the superscript c is omitted, the mapping yields

the last such reaching definition for that block. The set Bϕk
is a mapping from a block to

typed registers. If (b, r) ∈ Bϕk
, then two or more distinct reaching definitions at block b are

disambiguated when (r : t) is made a parameter of block b.

103

∃o ·R ⊆ {r, o}

(R,Bϕ)
collapse params−−−−−−−−→

b,r
(R,Bϕ)

∀o ·R ̸⊆ {r, o} Rout = R[b 7→ o][b′ 7→ o | (b′, r) ∈ R] Bϕout = Bϕ[b 7→ ∅]

(R,Bϕ)
collapse params−−−−−−−−→

b,r
(Rout, Bϕout)

Figure 7.17: Remove trivially-defined block parameters.

After reaching definitions are found, each block occurring in Bϕk
is given an additional

block parameter such that each parameter value is the predecessor block’s reaching definition

of r, and the occurrences of register r in each use u ∈ usef (r) are replaced by the reaching

definition of r at the program point where u occurs. This last step is done by application

of replace register procedures that ensures the implicit parameters of the block remains

well-formed as register references are added or removed to a block.

Along with the modified function fout, the transformation yields a set of definitions Dout

that are fresh to the function. This includes the modified original definitions of r, as well

as each block parameter inserted from the mapping Bϕk
. This set will be of use in LCSSA

reconstruction discussed in Section 7.2.

The majority work of this algorithm is performed in a set of find def procedures, formally

defined in Figure 7.15, Figure 7.16, and Figure 7.17. This procedure is partitioned into

find def ↓ (read: find def from bottom) and find def ↑ (read: find def from top). The bottom-

up procedure takes a component c as a reference and ignores any definitions occurring after

component c in the block. When c is a use of r, it prevents a register from being used within

a block before it is defined. If such a definition occurs in the block, then the pair (b, r)

is added to the mapping of reaching definitions Rout and no block parameters need to be

104

j1 ← . . .
switch i1 50 7→ e2() b()

switch j1 0 7→ e1() l()

i2 ← i1 + 1
branch h(i2)

k1 ← i1 × 2
branch j(k1)

k2 ← 0
branch j(k2)

z ← k3 × j1

h(i1)

b()

l() e1()

e2()

j(k3)

j1 ← . . .
switch i1 50 7→ e2(j1) b()

switch j1 0 7→ e1(i1, j1) l()

i2 ← i1 + 1
branch h(i2)

k1 ← q1 × 2
branch j(k1, q2)

k2 ← 0
branch j(k2, q3)

z ← k3 × q4

h(i1)

b()

l() e1(q1, q2)

e2(q3)

j(k3, q4)

Figure 7.21: Insertion of block parameters at the loop boundary.

inserted. If no such definitions occur in the block, the bottom-up procedure falls back to

a search from the top of the block. In this case, the pair (b, r) is added to the mapping of

new block parameters Bϕ and the reaching definition of each predecessor block is found (the

temporary insertion of this block parameter is necessary to ensure termination). If the set

of reaching definitions of the predecessors of this block contain exactly one definition apart

from r denoted by o, then r is a spurious definition and can be removed (as r may have been

referenced when the predecessor was searching for its reaching definition, each reference to r

must also be replaced by the correct definition o). This cleanup step is done by the collapse

params procedure in Figure 7.17.

7.2 LCSSA Reconstruction

A use of a register breaking LCSSA form can be eliminated by inserting additional ϕ-nodes

or block parameters to break definition-use chains at the loop boundary and rewriting uses

to reference the new reaching definitions. This process is demonstrated in Figure 7.21.

Registers i1 and j1 are both defined within but used outside of the loop composed of

105

l = loopFf
(b) d defines r {u ∈ usesf (r) | u occurs outside of bodyf (l)} = ∅

f
repair lcssa−−−−−−→
⟨b,d⟩

f

l = loopFf
(b) d defines r uses = {u ∈ usesf (r) | u occurs outside of bodyf (l)}

uses ̸= ∅ d defines r t = typeoff (d) bi
add param−−−−−−→

(r : t)
b′i

bj
add arg−−−−−−−→

exitsold,(r : t)
b′j exitsold = {e ∈ exitf (l) | b ≺ e} exitsnew = {b′i | bi ∈ exitsold}

predsold =
∪

b′∈exitsold

predf (b
′) predsnew = {b′j | bj ∈ predsold}

f = (ℓ, t, B, ℓ0) B′ = B \ (exitsold ∪ predsold) ∪ exitsnew ∪ predsnew

f ′ = (ℓ, t, B′, ℓ0) f ′
rewrite uses−−−−−−−−−−−−→

(r : t),{⟨bi,(r : t)⟩},uses

∗
(f ′′, Di) f ′′

repair lcssa−−−−−−→∪
Di

∗
fout

f
repair lcssa−−−−−−→
⟨b,d⟩

fout

Figure 7.22: Repairing LCSSA-violating uses of the register defined by d.

blocks h, b, and l. The link between the definition of i1 in the header of the loop and its use

in block e1 is segmented by the insertion of the block parameter defining the fresh register

q1. A symmetric parameter is not necessary in e2, as the block does not appear in any path

from the definition of i1 to one of its uses. The use of i1 in e1 can then be replaced by q1.

The use of j1 in this example appears more problematic, as both e1 and e2 appear on

a path from the definition of j1 to its use. This requires that a block parameter be placed

on both exits, respectively defining q2 and q3. The use of j1 can then be replaced by the

reaching definitions of q2 and q3 (which, in turn, requires the insertion of an additional block

parameter defining q4 in j).

Figure 7.22 formally defines this transformation for the definition ⟨f, b, d⟩. If the definition

does not occur within a loop, or if there are no uses of the defined register outside of the

defining loop, the transformation does not modify the input. Otherwise, a fresh parameter is

106

b′

b1

b2

b3

b′

b′′

b1

b2

b3

Figure 7.31: Splitting the red edge set containing (b1, b
′), (b2, b′), and (b3, b

′).

placed on a subset of the exit blocks of the defining loop and the defined register is added to

the argument list of references to these blocks. Then, each use outside of the loop is rewritten

to refer to a reaching definition from the set of fresh parameters. The introduction of

additional block parameters at the boundaries of a loop (or the block parameters inserted by

SSA reconstruction) may themselves violate LCSSA form, so the same procedure is applied

recursively to all new definitions. All new definitions are returned as a member of the set

Di yielded by the rewrite uses transformation.

7.3 Edge Set Splitting

A simple example of edge set splitting is illustrated in Figure 7.31. The set of edges being

split, denoted E, originate from a set of blocks sharing a common terminal successor, denoted

b′. An empty block b′′ is inserted onto the edges such that b′′ replaces b′ in the edge set E.

As b′′’s only successor is b′, the parameters of b′′ can be isomorphic in number and type to

the parameters of b′. During evaluation, b′′ simply proxies the values from a successor of b′′

to b′ unchanged. Performing this transformation reduces the number of predecessors of b′ by

|E| − 1 blocks.

Figure 7.32 formally defines this transformation. All edges in the set E must have the

107

E ⊆
←
E(Gf) ∨ E ⊆

→
E(Gf) lab(b′) = ℓb′ ℓb′′ ∈ Lb is fresh r′i is fresh

b′i = bi[ℓb′/ℓb′′] b′′ = (ℓb′′ , ⟨(r′i : ti) | (ri : ti) ∈ param(b′)⟩, ∅, ⟨branch ℓb′(r′i)⟩)

f = (ℓ, t, B, ℓ0) B′ = (B \ dom(E)) ∪ {b′i} ∪ {b′′} fout = (ℓ, t, B′, ℓ0)

Dout = Df [b
′′ 7→ ncaD(dom(E))][b′ 7→ b′′ : {b ∈ predf (b

′) | b′ ̸≺f b} = {b′′}]

l = ncaFf
({loopFf

(b) | b ∈ dom(E) ∪ {b′}}) Hout = HFf

Lout = LFf
[b′′ 7→ l] exits = {l′ ∈ Ff | b′ ∈ exitf (l′) ∧ dom(E) ∩ bodyf (l′) ̸= ∅}

Xold = {(ℓb′ , lab(l′)) | l′ ∈ exits ∧ (predf (b
′) \ dom(E)) ∩ bodyf (l′) = ∅})

Xnew = {(ℓb′′ , lab(l′)) | l′ ∈ exits} Xout = (XFf
\Xold ∪Xnew

(f,Df , HFf
, LFf

, XFf
)

split edge set−−−−−−−→
E={(bi,b′)}

(fout, Dout, Hout, Lout, Xout)

Figure 7.32: Inserting a block onto each edge in the set E.

same direction – all edges must be either forward edges or backedges. If the set contains edges

in both directions, the resulting graph may become irreducible, as illustrated in Figure 7.33.

In this example, the introduction of block b′′ creates a path into the strongly connected

component {h, b, l1, l2, b′′} that bypasses the loop header.

The block b′′ is introduced as a predecessor of b′, and references to block b′ from a block

in dom(E) are replaced with a reference to block b′′ with the same parameters. The addition

h

b

l1 l2

p1 p2

h

b

l1 l2 b′′

p1

p2

Figure 7.33: Splitting a heterogeneous-direction edge split may create an irreducible region.

108

of block b′′ necessitates an update the dominator tree as well as the set of loop bodies .

The immediate dominator of b′′ can be calculated by the dominators of b′′’s predecessors, as

shown by Alstrup and Laurisden [9]. In addition, the new immediate dominator of b′ is b′′

when all forward edges terminating at b′ are split. Generally, b′′ belongs to the same loop

as b′ except in the case where b′ is the header of a loop and backedges are not split. In this

case, b′′ cannot belong to the same loop as b′, as there is no path from b′ back to b′′ within

the loop. In this case, b′′ is placed in the loop common to the loops of the blocks in dom(E)

and block b′. The loop exits are incrementally maintained by adding b′′ to the exit set of all

loops for which b′ is an exit and removing b′ from the exit set of loops for which b′′ replaces

b′ as an exit. The loop nesting structure does not change – no loops are created, destroyed,

or unnested from their parent.

7.4 Repairing Violations

In this section, we present a set of transformations to repair canonical form property vio-

lations. Each violation can be repaired independently and in any order, so a control flow

graph with n distinct violations can be converted into canonical form by n applications of the

following transformations. As each transformation adds an additional block to the graph,

the canonicalization of a function f with n distinct violations increases the number of blocks

by n, which is bounded by above
∑

l∈Ff
(2 + |exitf (l)|).

7.4.1 Property 4.3.1 – Unique latch

A loop l with multiple latches can be modified to have a unique latch by re-routing the target

of all the former backedges into a fresh block from which a unique backedge originates, as

illustrated in Figure 7.41.

109

p

h

l1

l2

p

h

l1

l2

ϵ

Figure 7.41: Collapsing backedges (l1, h) and (l2, h) into the single backedge (ϵ, h).

|latchf (l)| > 1

(f,Df , HFf
, LFf

, XFf
)

split edge set−−−−−−−−−−−−−−−→
{(b,headerf (l))|b∈latchf (l)}

(fout, Dout, Hout, Lout, Xout)

(f,Df , HFf
, LFf

, XFf
)

unique latch−−−−−−−→
l∈Ff

(fout, Dout, Hout, Lout, Xout)

Figure 7.42: Repairing non-unique latch of loop l.

Figure 7.42 formally defines this transformation parameterized over the loop l that vio-

lates Property 4.3.1. All of the heavy lifting of this transformation is off-loaded to the split

edge set transformation over the backedges.

7.4.2 Property 4.3.2 – Dedicated preheader

A loop l without a dedicated preheader can be given one by introducing a fresh block whose

sole successor is the header of l and re-routing all external edges to l to the preheader, as

illustrated in Figure 7.43.

Figure 7.44 formally defines two transformations parameterized over the loop l that vio-

lates Property 4.3.2. The first transformation considers graphs where there is some external

edge terminating at l, but the source of the edge is not a dedicated preheader. This can

occur if there are multiple edges entering l, or if the edge entering l originates at a block

110

h

p1 p2

l

h

ϵ

p1 p2

l

Figure 7.43: Adding a dedicated preheader for loop with the header h.

not dedicated to l. In this case, we can again offload the heavy lifting to the split edge set

transformation over the edges entering l. The second transformation considers graphs where

no external edge enters l. This occurs when the header of l is the entry block of the function.

In this case, a new function entry block that immediately jumps to the loop header can be

created.

7.4.3 Property 4.3.3 – Dedicated exits

A loop l with an undedicated exit block e ∈ exitf (l) can be modified so that this exit is no

longer undedicated by placing a block on the loop boundary so that all paths from b ∈ l to

e must travel through this new dedicated exit, as illustrated in Figure 7.45.

Figure 7.46 formally defines this transformation parameterized over the loop l and the

undedicated exit e ∈ exitf (l) violating Property 4.3.1. Again, this transformation can be

expressed as an edge set split over the edges exiting l to e.

111

h = headerf (l) P = predf (h) \ bodyf (l)

|P | > 1 ∨ succf (P) ̸= {h} (f,Df , HFf
, LFf

, XFf
)

split edge set−−−−−−−→
{(p,h)|p∈P}

(fout, Dout, Hout, Lout, Xout)

(f,Df , HFf
, LFf

, XFf
)

dedicate preheader−−−−−−−−−−→
l∈Ff

(fout, Dout, Hout, Lout, Xout)

f = (ℓ, t, B, ℓ0) h = headerf (l)

lab(h) = ℓ0 ℓ′0 is fresh r′i is fresh param = ⟨(r′i : ti) | (ri : ti) ∈ param(h)⟩

b′ = (ℓ′0, param, ∅, ⟨branch ℓ0(r′i)⟩) B′ = B ∪ {b′} fout = (ℓ, t, B′, ℓ′0)

Dout = Df [b 7→ p] Hout = HFf
Lout = LFf

Xout = XFf

(f,Df , HFf
, LFf

, XFf
)

dedicate preheader−−−−−−−−−−→
l∈Ff

(fout, Dout, Hout, Lout, Xout)

Figure 7.44: Repairing non-dedicated preheader of loop l.

p

h

b

l

e

p

h

b

l

ϵ e

Figure 7.45: Adding a dedicated exit block to replace non-dedicated exit e of loop with the
header h.

112

B = predf (e) ∩ bodyf (l)

B ̸= predf (e) (f,Df , HFf
, LFf

, XFf
)

split edge set−−−−−−−→
{(b,e)|b∈B}

(fout, Dout, Hout, Lout, Xout)

(f,Df , HFf
, LFf

, XFf
)

dedicate exit−−−−−−−−−→
l∈Ff , e∈exitf (l)

(fout, Dout, Hout, Lout, Xout)

Figure 7.46: Repairing non-dedicated exit of loop l.

113

Appendix

Here we provide the proofs of maintenance properties of canonicalization transformations

presented in Chapter 7. We specifically cover SSA and LCSSA reconstruction, edge set

splitting, unique latch, dedicated preheader, and dedicated exit transformations. The last

three transformations rely heavily on edge set splitting.

7.A SSA Reconstruction

In this section, we refer to the rewrite uses operation (notated below). For specific details

(including names of intermediate components), refer to Figure 7.14.

f
rewrite uses−−−−−−→

(r : t)
(fout, Dout)

Theorem 7.A.1. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. We prove by filling in the slots of Template 6.A.1.

[Slot → Refinement] We define an alternate version of the mapping σD as follows.

σDft
= {(di, d′i) | di ∈ deff (r) where d′i = di[r[

−→σft
]/(σR·−→σft

)(di)]}

114

The difference is subtle but critical: the registers on both sides of the replacement are with

respect to the function ft rather than the original function f . We similarly define an alternate

version of the mapping Rk as Rft(b) = Rk(b
′)[−→σft] such that b ∈ C(b′) and b′ ∈ body(f).

We refine the translation of blocks by adding parameters to blocks according to the

mapping Bϕk
and mapping existing block parameter definitions of register r via the mapping

σDft
. We omit the translation of implicit parameters as they do not directly affect evaluation

semantics (and can be trivially re-calculated via the block’s stream). In the following, we

let bt = (ℓbt , ⟨(ri : ti)⟩, {(rj : tj)}, st) where st is fully qualified as ⟨ft, bt, st⟩.

trans(⟨ft, bt⟩) = (ℓbt , addparam(⟨ft, bt⟩),_, trans(st))

addparam(⟨ft, bt⟩) =


⟨(ri : ti)⟩[σDft

] ∪ ⟨rt[−→σft] : t⟩ (b′t, rt) ∈ Bϕk
∧ bt ∈ C(b′t)

⟨(ri : ti)⟩[σDft
] otherwise

We refine the translation of streams (also used by the translation of blocks above) by trans-

lating definitions of register r via the mapping σDft
and translating uses of register r via

the mapping Rk. This also adds the reaching definition to the argument list of any block

reference to a clone of a block in Bϕk
.

trans(⟨ft, bt, ((st, Tt), ŝt)⟩) = (st[σDft
], addarg(⟨ft, bt, Tt⟩))[r[−→σft

]/Ru
ft
(bt) | u ∈ useft(r[−→σft)], trans(ŝt)

addarg(⟨ft, bt, T ⟩) = T [ℓb′ (e)/ℓb′ (e,Rft
(bt)) | b′ ∈ C(dom(Bϕk

)) where ℓb′ = lab(b′)]

We refine the translation of return contexts by replacing the target register with the

reaching definition at the instruction following a call when the target register is a definition

of the reconstructed register.

trans(⟨ft, bt, rt, s⟩) =


⟨trans(ft), trans(⟨ft, bt⟩), Rs1

ft
(bt), trans(⟨ft, bt, s⟩)⟩ rt = r[−→σft]

⟨trans(ft), trans(⟨ft, bt⟩), rt, trans(⟨ft, bt, s⟩)⟩ otherwise

115

We add the following relationship stating that registers distinct from r and the definitions

that replace it should have the same value in both register contexts, and that the register

context γ2 should have the same value as register r in register context γ1 (at some given

program point). In the following, we use ⟨ft, bt, ct⟩ to mean the leading component of the

block’s stream in the same step of evaluation of function f as the register contexts occur.

γ1 \ C(r) = γ2 \
∪

r′ defined by Dout

C(r′) γ1(r[
−→σft]) = γ2(R

ct
k (bt))

[Slot → Invokability] The number of parameters of the entry block of functions f and

fout must be the same, otherwise there is an ambiguous reaching definition of register r in

the entry block. This implies that the implicit parameter set of the entry block of f is not

empty and therefore f is not well-typed. However, if register r is a parameter of block f , then

that register may be renamed by the transformation. Then, param(bt2) = param(bt1)[σDft1
].

Let r′ = r[−−→σft1]. If the entry block of function f defines register r, then register context γ1

introduces a new value for register r′ while register context γ2 introduces the same value

for register Rft1
(bt1). In either case, the same set of register-value pairs distinct from r

are assigned to both register contexts. Both of these additions result in register contexts

consistent with the strengthened induction.

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur in a block that either contains a definition of r, contains a use

of r, or is a join point for multiple reaching definitions of r (and thus has an element in the

mapping Bϕk
).

Block Parameters Here, we consider the case where the (n+ 1)-th step of evaluation of

f transfers control to a block whose parameters have been modified by the transformation

by application of rule E-Switch. Let r′ = r[−−→σft1], dom(param(bt1)) = ⟨ri⟩, and let ℓb(ei) be

116

the block reference taken by this step of evaluation.

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt⟩ | γ1 | µ′ | ν ′ | Ψ′; term(bt), ŝt1)

→ (⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ŝt1)

By our strengthened inductive hypothesis, the n′-th step of evaluation of fout stops in function

ft2 = trans(ft1) on a terminator that transfers control away from b′t = trans(⟨ft1 , bt⟩), as

shown below, such that γ1 and γ2 are consistent with the strengthened induction. The

(n′ + 1)-th step of evaluation of fout will proceed by application of rule E-Switch.

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , trans(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; trans(⟨ft1 , bt, term(bt)⟩), trans(ŝt1))→

(⟨p[f/fout], ft2 , bt2⟩ | γ′2 | µ′ | ν ′ | Ψ′; stream(bt2), trans(ŝt1))

First, we consider the case where (bi, ri) ∈ Bϕk
such that bt1 ∈ C(bi). An extra argument

is added to all references targeting block bt1 via application of the function addarg in the

translation defined above. Let r′1 = ri[
−−→σft1] and r′2 = Rft1

(bt). Then, ℓb(ei[r′/Rft1
(bt1)], r

′
2)

is the block reference taken by the parallel step of evaluation and bt2 = trans(⟨ft1 , bt1⟩).

Here, γ′2 = γ2[ri 7→ γ2(ei[r
′/Rft1

(bt1)])][r
′
1 ← γ2(r

′
2)]. Then, both register contexts get the same

register-value pairs that are distinct from r and evaluation of fout additionally assigns the

value of register r′2, the value of the reaching definition at the bottom of block bt, to register

r′1, the reaching definition at the top of block bt1 . Thus, the resulting register contexts are

consistent with the strengthened induction.

Next, we consider the case where the parameter set of bt1 contains a definition d of

register r. Notice that these cases are mutually exclusive, as no component of block bt1 can

occur before the set of block parameters and necessitate a reaching definition from the block

predecessors. Let r′1 be the register defined by σDft1
(d). As no extra argument is added to

117

the reference, ℓb(ei[r′/Rft1
(bt1)]) is the block reference taken by the parallel step of evaluation

and bt2 = trans(⟨ft1 , bt1⟩). Here, γ′2 = γ2[ri[r
′/r′1] 7→ γ2(ei[r

′/Rft1
(bt1)])]. Then, both register

contexts get the same register-value pairs that are distinct from r. Additionally, evaluation

of f assigns a value for register r′ and evaluation of fout assign the same value for register

r′1, both the reaching definitions at the top of blocks bt1 and bt2 , respectively.

Instruction Here, we consider the case where the n-th step of evaluation of f evaluates an

instruction which has been modified by the transformation. Let the instruction be denoted by

⟨ft1 , bt1 , I⟩ = r ← O. By our strengthened inductive hypothesis, the n′-th step of evaluation

of f ′ stops at a similar instruction. Let r′ = r[−−→σft1] and r′1 = RI
ft1

(bt1). Then, by translation,

the symmetric instruction in the parallel evaluation has the form r[r′/σR·−−→σft1
] ← O[r′/r′1].

Let γ1 and γ2 be the register contexts in the n-th step of evaluation of f and the n′-th

step of evaluation of fout, respectively. At this point in evaluation, γ1(r′) = γ2(r
′
1) by

assumption. Then, the effective value of operation O is equivalent in both evaluations.

Evaluation proceeds in both streams by rule E-Inst. The full case analysis omitted here,

but is nearly identical to Lemma 6.B.1 and Lemma 6.B.2.

First, we consider the case where the instruction is not a function call. The resulting

streams are the input streams with their head elements removed, in which case the tails of

both streams remain consistent with the strengthened induction by assumption. In the case

where an instruction causes an abnormal exit, the resulting streams are both ϵ and are also

consistent with the strengthened induction. The resulting register contexts either gain the

same register (in the case that I was not a definition of r′), or γ1 assigns a value for r′ and

γ2 assigns the same value to the reaching definition of the following instruction.

Now, we consider the case where the instruction is a function call. The resulting func-

tions are either identical, or another pair of instances of functions f and fout. In the former

118

case, the resulting blocks are identical and their unmodified streams are consistent with the

strengthened induction. In the latter case, the resulting functions, blocks, and streams are

implied by [Slot Invokability]. The resulting return contexts also contain a new element ref-

erencing either the same register (in the case that I was not a definition of r′), or referencing

register r′ in the evaluation of f and referencing the reaching definition of the following

instruction in the evaluation of fout.

Terminator Here, we consider the case where the (n+ 1)-th step of evaluation of f eval-

uates a terminator which has been modified by the transformation. Let the terminator be

denoted by ⟨ft1 , bt1 , T ⟩. By our strengthened inductive hypothesis, the n′-th step of evalua-

tion of fout stops at a similar instruction. Let r′ = r[−−→σft1], let r′1 = RT
ft1

(bt1), and let γ1 and

γ2 be the register contexts in the n-th step of evaluation of f and the n′-th step of evaluation

of fout, respectively. At this point in evaluation, γ1(r′) = γ2(r
′
1) by assumption.

First, assume that T is a switch. Let ref = ℓb(ei) be the reference taken by the (n+1)-th

step of evaluation of f . By translation, the symmetric block reference in the terminator of

the parallel evaluation is ℓb(ei[r′/r′i]). Control is transferred to blocks with the same label

and the same set of parameters by rule E-Inst (remember that the case where parameters

are modified is handled above). No parameter of either block is a definition of r′ and both

register contexts gain the same set of register-value pairs.

Now, assume that T is a return of the form T = return e. By translation, the symmet-

ric return of the parallel evaluation is return e[r′/r′1]. Then, the values of expressions e and

e[r′/r′1] are the same. If the return context in the evaluation of f is empty, then the result-

ing streams are both ϵ by application of rule E-Return-Last and are trivially consistent

with the strengthened induction. Otherwise, let ŝt1 = ⟨ft1 , bt1 , rt, s⟩ be the return context

in the evaluation of f . The functions, blocks, and streams resulting from application of

119

rule E-Return are consistent with the strengthened induction by translation of trans(ŝt1).

The resulting register contexts either assign the same value for the same register (in the case

that rt ̸= r[−−→σft1]), or γ1 assigns a value for r′ and γ2 assigns the same value to the reaching

definition of the following instruction.

· · · We omit the remaining cases where evaluation is on an unmodified component within

a modified block. These cases can be easily proven by application of the lemmas described

in Section 6.B.

[Slot ← Refinement] In the following, we define a substitution that replaces registers

symmetric to all registers defined by Dout with the register symmetric to register r in function

ft. This substitution is defined as σ−1Rft
= {(r′[−→σft], r[−→σft]) | di ∈ Dout ∧ di defines r′}.

We refine the translation of blocks by removing parameters from blocks according to the

mapping Bϕk
and mapping the remaining block parameter definitions of register r via the

mapping σ−1sRft
. In the following, we let bt = (ℓbt , ⟨(ri : ti)⟩, {(rj : tj)}, st) where st is fully

qualified as ⟨ft, bt, st⟩.

trans−1(⟨ft, bt⟩) = (ℓbt , remparam(⟨ft, bt⟩)[σ−1Rft
],_, trans(st))

remparam(⟨ft, bt⟩) =


⟨p1, . . . , pk−1⟩ lab(bt) ∈ dom(Bϕk

) ∧ param(bt) = ⟨p1, . . . , pk⟩

param(bt) otherwise

We refine the translation of streams by translating the registers symmetric to the fresh

registers introduced to function fout back to the register symmetric to register r in function

ft. This also removes the additional block arguments added by the transformation.

trans−1(⟨ft, bt, ((st, Tt), ŝt)⟩) = (st, remarg(⟨ft, bt, Tt⟩))[σ−1Rft
], trans(ŝt)

remarg(⟨ft, bt, T ⟩) = T [ℓb′ (e,_)/ℓb′ (e) | b′ ∈ C(dom(Bϕk
)) where ℓb′ = lab(b′)]

120

We refine the translation of return contexts by replacing the target register with a register

symmetric to register r when the target register is symmetric to a fresh register introduced

to function fout.

trans−1(⟨ft, bt, rt, s⟩) = ⟨trans(ft), trans(⟨ft, bt⟩), rt[σ−1Rft
], trans(⟨ft, bt, s⟩)⟩

We use the same relationship for register contexts as the forward case (with the same

abuses of notation).

[Slot ← Invokability] As in the forward case, the number of parameters of the entry

block of functions f and fout must be the same. Then, param(bt1) = param(bt2)[σ
−1
Rft2

]. The

remainder of this case proceeds as in the forward case.

[Slot ← Asymmetric Evaluation] By the refined trans−1 relation, all temporarily di-

verging steps of evaluation occur in a block that contains either a definition or a use of a

fresh register introduced by the transformation.

Block Parameters Here, we consider the case where the (n′ + 1)-th step of evaluation of

fout transfers control to a block whose parameters have been modified by the transformation

by application of rule E-Switch. Let dom(param(bt2)) = ⟨ri⟩ and let ℓb(ei) be the block

reference taken by this step of evaluation.

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n

(⟨p[f/fout], ft2 , bt⟩ | γ2 | µ′ | ν ′ | Ψ′; term(bt), ŝt2)→

(⟨p[f/fout], ft2 , bt2⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans−1(ft2) on a terminator that transfers control away from b′t = trans(⟨ft2 , bt⟩),

121

as shown below, such that γ1 and γ2 are consistent with the strengthened induction. The

(n+ 1)-th step of evaluation of f will proceed by application of rule E-Switch.

(p | γ | µ | ν | Ψ; f(vti))→n′

(⟨p, ft1 , trans−1(⟨ft2 , bt⟩)⟩ | γ2 | µ′ | Ψ′; trans−1(⟨ft2 , bt, term(bt)⟩), trans−1(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ′2 | µ′ | ν ′ | Ψ′; stream(bt1), trans−1(ŝt2))

In the following, let r′1 = Rft1
(bt1). First, we consider the case where lab(bt2) ∈ dom(Bϕk

).

The last occurring argument is removed from all references targeting block bt2 via appli-

cation of the function remarg in the translation defined above. Let k = |⟨ri⟩|. Then,

ℓb(⟨ei1 , . . . , eik−1
⟩[r′1/r[−−→σft1

]]) is the block reference taken by the parallel step of evaluation and

bt1 = trans(⟨ft2 , bt2⟩). Here, γ′1 = γ1[ri 7→ γ1(ei[r
′
1/r[−−→σft1

]])
i<k

] and the resulting register con-

texts remain consistent with the strengthened induction with reasoning symmetric to the

forward case.

Next, we consider the case the block parameters of bt2 contains a definition in d ∈ Dout

that replaced an existing block parameter. Let e′i = ei[r
′
1/r[−−→σft1

]]. In the following, let ℓb(e′i)

is the block reference taken by the parallel step of evaluation and bt1 = trans−1(⟨ft2 , bt2⟩).

Here, γ′1 = γ1[ri 7→ γ1(e′i)] and the resulting register contexts remain consistent with the

strengthened induction with reasoning symmetric to the forward case.

· · · The remaining cases in this direction are omitted as the only significant difference is

the direction in which the registers are mapped (in the forward case it is from register r to

a fresh definition; in the reverse case it is all definitions of Dout to register r).

Theorem 7.A.2. If p | f is well-typed, then p | fout is well-typed.

Proof. Let b be a block that has been changed by this transformation. Then, at least one

of the following must be true: b is given a new block parameter, a definition in d ∈ deff (r)

122

occurs in b, a successor of b is given a new block parameter, or a use in u ∈ usef (r) occurs

in b. We show that for any combination of these changes, block b remains well-typed. In the

following, note that every register in Rk and Bϕk
have type t.

First, suppose b is given a new block parameter defining register r′. If b is not further

altered such that r′ is later referenced by an instruction or the block’s terminator, then the

additional parameter simply expands the typing environment for the block’s stream and b

remains well-typed by rule T-Block. We discuss the cases where b is further altered to

contain a reference to r′ below.

Second, suppose that block b contains definition d. Then, register r is replaced by register

r′ = σR(d) in d. The definition remains trivially well-typed by rule T-Inst.

Third, suppose that a successor s of block b is given a new block parameter (also of

type t). Then, the register r′ = Rk(b) is added as a final argument to each block reference

targeting block s in the terminator of block b. Register r′ is either defined within block b (by

a definition previously defining r or by a newly inserted block parameter), or r′ is an implicit

parameter of block b by application of the replace register operation. In either case, (r′ : t)

at the time the component is typed. As the addition of the argument and the parameter

have the same type, each block reference is well-typed by rule T-Ref.

Fourth and finally, suppose block b contains the use u. Then, register r is replaced by

register r′ = Ru
k(b) in u. As in the previous case (and for the same reasons), (r′ : t) at the

time the component is typed.

Lastly, we need to show that the nonlocals are well-formed. By construction of each Ri,

every pair (b 7→ r′) ∈ Ri it must be the case that the definition of r′ dominates block b in fout.

If there were multiple reaching definitions at block b, they would be disambiguated by a block

parameter inserted in block b (thus the definition trivially dominates the block). If there

was a single reaching definition at block b, then either b defines r′(and the definition again

123

trivially dominates the block), or all the predecessors of b have the same reaching definition

(and the same argument applies recursively). Also notice that the find def procedure ‘gets

stuck’ when the input is a function that contains a use before a definition (or a use that

is not dominated by a set of definitions) – as p | f is well-typed, this is not the case. The

nonlocal parameters of blocks between block b and the definition of r′ gain an additional

register, but this register is removed from the nonlocal set of the block where r′ is defined.

As definitions of all such registers dominate each of its uses, nonlocalfout(entry(fout)) = ∅

and fout is well-typed by rule T-Func.

Corollary 7.A.3. The set of paths over block labels from ℓ0 to ℓb′ in Gfout for some block

b′ ∈ B where lab(b′) = ℓb′ is identical to the set of such paths in Gf .

Theorem 7.A.4. If f is in canonical form, then fout is in canonical form.

Proof. Trivial by Corollary 7.A.3.

Theorem 7.A.5. If r is a register defined multiple times in fout, then r is also defined

multiple times in f .

Proof. All definitions introduced to fout come from the mapping σR and the set Bϕk
, both

of which are constructed with fresh registers.

Corollary 7.A.6. All definitions of register r in f are rewritten to define fresh registers in

fout.

Theorem 7.A.7. If there are no uses of register r violating LCSSA form in function f , then

every use u′ violating LCSSA form in function fout has a symmetric use u violating LCSSA

form in function f .

Proof. Let r′ be the register used by u′. If function f also defines register r′, then the

set of definitions and uses of register r′ are symmetric in both functions. Otherwise, the

124

definition of r′ was introduced to function fout to either replace a definition of register r or

to disambiguate two unique reaching definitions of register r. In the latter case, each such

point occurs on a path from the uses to the set of dominating definitions (in the reverse

graph). As it was assumed that all uses of register r occur in the loop as its definitions, no

such path can exit the boundary of said loop.

Theorem 7.A.8. The unique dominator tree of Gfout is Df .

Proof. Trivial by Corollary 7.A.3.

Theorem 7.A.9. If f is in canonical form, then Ff is the unique loop nesting forest of Gfout .

Proof. Trivial by Corollary 7.A.3.

7.B LCSSA Reconstruction

In this section, we refer to the repair lcssa operation (notated below). For specific details

(including names of intermediate components), refer to Figure 7.22.

f
repair lcssa−−−−−−→
⟨b,d⟩

(fout, Bϕ, σϕ)

Lemma 7.B.1. Assume p | f is well-typed. If f can be evaluated n steps with some register

context, memory context, nondeterminism state, and effects list, then f ′ can be evaluated

for n′ steps with the same initial context and arguments and reach a state with the same

memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. We prove by filling in the slots of Template 6.A.1.

[Slot → Refinement] We refine the translation of blocks by adding parameters to clones

of exitsold. We omit the translation of implicit parameters as they do not directly affect

125

evaluation semantics (and can be trivially re-calculated via the block’s stream). In the

following, we let bt = (ℓbt , ⟨(ri : ti)⟩, {(rj : tj)}, st) where st is fully qualified as ⟨ft, bt, st⟩.

trans(⟨ft, bt⟩) = (ℓbt , addparam(⟨ft, bt⟩),_, trans(st))

addparam(⟨ft, bt⟩) =


⟨(ri : ti), r[−→σft] : t⟩ bt ∈ C(exitsold)

⟨(ri : ti)⟩ otherwise

We refine the translation of streams (also used by the translation of blocks above) by adding

the register r to the argument list of any block reference to a clone of block in exitsold.

By construction, this set of blocks contains all references to blocks in exitsold, so we can

safely apply this mapping over terminators regardless of the source block when in a clone of

function f .

trans(⟨ft, bt, ((st, Tt), ŝt)⟩) =


(st, addarg(⟨ft, bt, Tt⟩)), trans(ŝt) ft ∈ C(f)

(st, Tt), trans(ŝt) otherwise

addarg(⟨ft, bt, T ⟩) = T [ℓb′ (e)/ℓb′ (e,r[−→σft
]) | b′ ∈ C(exitsold) where ℓb′ = lab(b′)]

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot → Invokability] It cannot be the case that bt1 ∈ C(exitsold) as each block in exitsold

is strictly dominated by entry(f). First, suppose bt ∈ predsold. In this case, canonical form

must be broken as the entry block cannot otherwise be a member of a loop. As bt is a direct

predecessor of an exit block through which there is a path to the use of r and f is well-

typed, r must be defined in the entry block. In the following, we decompose stream(bt) into

(st, T). Let s′t = (st, addarg(⟨ft, bt, T ⟩)). Then, trans(⟨ft1 , bt⟩) = (lab(bt), param(bt), ∅, s′t),

trans(⟨ft1 , bt, stream(bt)⟩) = s′t, and the identical register contexts are consistent with the

126

strengthened induction. In all other cases, the identical blocks, streams, and register contexts

are consistent with the strengthened induction.

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur at the terminator of a clone of block in exitsold.

Altered Exit In this case, we consider the case where the (n+1)-th step of evaluation of

f transfers control from a block in bt ∈ C(predsold) by application of rule E-Switch. First,

we assume that control is transferred to a block C(exitsold). Here, dom(param(bt1)) = ⟨ri⟩.

Let T = switch v cvi 7→ refi refd and let ref = ℓb′(ei) be the block reference taken by this

step of evaluation.

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt⟩ | γ1 | µ′ | ν ′ | Ψ′; T, ŝt1)

→ (⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ŝt1)

Let rt = r[−−→σft1] in the following. By our strengthened inductive hypothesis, the n′-th

step of evaluation of f ′ stops in function ft2 = trans(ft1) on a terminator that transfers

control away from trans(⟨ft1 , bt⟩), as shown below, such that γ1 and γ2 are consistent with

the strengthened induction. Then, the (n′+1)-th step of evaluation of f ′ proceeds from ap-

plication of rule E-Switch by taking the symmetric switch case. Here, bt2 = trans(⟨ft1 , bt1⟩)

and as bt ∈ exitsold, param(bt2) = param(bt1) ∪ ⟨(rt : t)⟩. Let γ′2 = γ2[ri 7→ γ2(ei)] so that it

can be referred to by name in the following.

(p[f/f ′] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/f ′], ft2 , trans(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; addarg(⟨ft1 , bt1 , T ⟩), trans(ŝt1))→

(⟨p[f/f ′], ft2 , bt2⟩ | γ′2[rt 7→ γ′2(rt)] | µ′ | ν ′ | Ψ′; stream(bt2), trans(ŝt1))

The additional assignment to γ2 has no effect on the content of the context and can be

effectively ignored. Then, as register contexts γ1 and γ2 are consistent with the strengthened

127

induction, they remain consistent after the parallel addition of registers in the last step of

evaluation.

In the other case, we assume that control is transferred to another block distinct from

the set C(exitsold). Here, dom(param(bt1)) = ⟨ri⟩ and the evaluation of function f proceeds

as in the case above. By our strengthened inductive hypothesis, the n′-th step of evalu-

ation of f ′ stops in function ft2 = trans(ft1) on a terminator that transfers control away

from trans(⟨ft1 , bt⟩), as shown below, such that γ1 and γ2 are consistent with the strength-

ened induction. Then, the (n′ + 1)-th step of evaluation of f ′ proceeds from application of

rule E-Switch by taking the symmetric switch case. Here, bt2 = trans(⟨ft1 , bt1⟩) and as

bt ̸∈ exitsold, param(bt2) = param(bt1).

(p[f/f ′] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/f ′], ft2 , trans(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; addarg(⟨ft1 , bt1 , T ⟩), trans(ŝt1))→

(⟨p[f/f ′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), trans(ŝt1))

As register contexts γ1 and γ2 are consistent with the strengthened induction, they remain

consistent after the parallel addition of registers in the last step of evaluation.

Altered Block Next, we cover the cases where the n-th step of evaluation of f is earlier

within a block b ∈ C(predsold) (but not yet at the terminator). This case is trivial by

application of Lemma 6.C.1.

[Slot ← Refinement] We refine the translation of blocks and streams as the reverse of

the forward direction. To translate blocks, we remove the additional parameters and implicits

added by the transformation. Removing a parameter simply chops off the last item in the

parameter lists. We omit the translation of implicit parameters as they do not directly affect

128

evaluation semantics (and can be trivially re-calculated via the block’s stream).

trans(⟨ft, bt⟩) = (ℓbt , remparam(⟨ft, bt⟩),_, trans(st))

remparam(⟨ft, bt⟩) =


⟨p1, . . . , pk−1⟩ bt ∈ C(exitsnew) ∧ param(bt) = ⟨p1, . . . , pk⟩

param(bt) otherwise

Similarly, to translate streams, we remove the additional arguments added by the transfor-

mation. Removing an argument simply chops off the last item in the argument lists.

trans(⟨ft, bt, ((st, Tt), ŝt)⟩) =


(st, remarg(⟨ft, bt, Tt⟩)), trans(ŝt) bt ∈ C(predsnew)

(st, Tt), trans(ŝt) otherwise

remarg(⟨ft, bt, T ⟩) = T [ℓb′ (e,_)/ℓb′ (e) | b′ ∈ C(exitsnew) where ℓb′ = lab(b′)]

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot ← Invokability] First, suppose bt ∈ predsnew. Let r′ = r[−−→σft2] be the register

symmetric to r in this instance of function f ′. This register must be defined in block bt

as r is defined in the entry block of f and no definitions are removed in the construction

of function f ′. We decompose stream(bt) into (st, T). Let s′t = (st, remarg(⟨ft2 , bt, T ⟩)).

Then, trans−1(⟨ft2 , bt⟩) = (lab(bt), param(bt), ∅, s′t), trans−1(⟨f, bt, stream(bt)⟩) = s′t, and the

identical register contexts are consistent with the strengthened induction. In all other cases,

trans−1(⟨ft2 , bt⟩) = bt, trans−1(⟨ft2 , bt, stream(bt)⟩) = stream(bt), and the identical register

contexts are consistent with the strengthened induction.

[Slot ← Asymmetric Evaluation] By the refined trans−1 relation, all temporarily di-

verging steps of evaluation occur at the terminator of a clone of a block in exitsnew.

129

Altered Exit In this case, we consider the case where the (n′+1)-th step of evaluation of

f ′ transfers control from a block in bt ∈ C(predsnew) by application of rule E-Switch. First,

we assume that control is transferred to a block C(exitsnew). Here, dom(param(bt2)) = ⟨ri⟩.

Let T = switch v cvi 7→ refi refd and let ref = ℓb′(ei) be the block reference taken by this

step of evaluation.

(p[f/f ′] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/f ′], ft2 , bt⟩ | γ2 | µ′ | Ψ′; T, ŝt2)→

(⟨p[f/f ′], ft2 , bt2⟩ | γ2[rt 7→ γ2(rt)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2))

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in

function ft1 = trans−1(ft2) on a terminator that transfers control away from trans−1(⟨ft2 , bt⟩),

as shown below, such that γ1 and γ2 are consistent with the strengthened induction. Then,

the (n+1)-th step of evaluation of f proceeds from application of rule E-Switch by taking

the symmetric switch case. Here, bt1 = trans−1(⟨ft2 , bt2⟩) and as bt ∈ exitsnew, param(bt1)

consists of all but the last element of param(bt2). Let k = |param(bt2)| in the following.

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft2 , bt⟩)⟩ | γ1 | µ′ | ν ′ | Ψ′; remarg(⟨ft2 , bt2 , T ⟩), trans−1(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)
(i<k)

] | µ′ | ν ′ | Ψ′; stream(bt1), trans−1(ŝt2))

The additional assignment in register context γ2 simply reassigns a register its old value,

and the absence of this assignment in register context γ1 has no observable effects on its

contents. Then, both register contexts remain consistent with the strengthened induction

after the parallel addition of registers.

In the other case, we assume that control is transferred to another block distinct from

the set C(exitsnew). Here, dom(param(bt2)) = ⟨ri⟩ and the evaluation of function f ′ proceeds

130

as in the case above. By our strengthened inductive hypothesis, the n-th step of evaluation

of f stops in function ft1 = trans−1(ft2) on a terminator that transfers control away from

trans−1(⟨ft2 , bt⟩), as shown below, such that γ1 and γ2 are consistent with the strengthened

induction. Then, the (n+ 1)-th step of evaluation of f proceeds from application of rule E-

Switch by taking the symmetric switch case. Here, bt1 = trans−1(⟨ft2 , bt2⟩) and as bt ̸∈

exitsnew, param(bt1) = param(bt2).

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft2 , bt⟩)⟩ | γ1 | µ′ | Ψ′; remarg(⟨ft2 , bt2 , T ⟩), trans−1(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), trans−1(ŝt2))

As register contexts γ1 and γ2 are consistent with the strengthened induction, they remain

consistent after the parallel addition of registers in the last step of evaluation.

Altered Block Next, we cover the cases where the n′-th step of evaluation of f ′ is earlier

within a block b ∈ C(predsnew) (but not yet at the terminator). This case is trivial by

application of Lemma 6.C.1.

Theorem 7.B.2. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. By application of Lemma 7.B.1 and Theorem 7.A.1.

Corollary 7.B.3. The set of paths over block labels from ℓ0 to ℓb′ in Gfout for some block

b′ ∈ B where lab(b′) = ℓb′ is identical to the set of such paths in Gf .

Theorem 7.B.4. If f is in canonical form, then fout is in canonical form.

131

Proof. Trivial by Corollary 7.B.3.

Lemma 7.B.5. If p | f is well-typed and f is in SSA form, then p | f ′ is well-typed.

Proof. Consider a block bold ∈ exitsold ∪ predsold and the corresponding block in the interme-

diate function bnew = blockf ′(lab(bold)). First, suppose bnew is given a new block parameter

defining r of type t. As f is in SSA form, the only other definition of register r gives it

a value of type t. If register r is used in bnew, then this parameter takes the place of an

implicit register in r and the typing context used to type the block’s stream is the same as

bold. If register r is unused in bnew, then an additional register exists in the register environ-

ment typing that Lemma 3.A.5 shows is not meaningful. Now, suppose that an argument

is added to some number of references in bnew. Each reference targets a block constructed

from exitsold, each such block gaining an additional parameter of type t. Each additional

argument is the register r of type t, and each reference remains well-typed by rule T-Ref.

If register r is not otherwise used in this block, then it is added as an implicit parameter by

application of the add arg procedure. This also adds register r to the nonlocal parameters of

blocks on the path from bnew to the definition of r. However, as p | f is well-typed and f is

in SSA form, the block containing the original definition necessarily dominates bnew. Then,

nonlocal(entry(fout)) = ∅ and the function is well-typed by rule T-Block.

Theorem 7.B.6. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. Trivial by repeated application of Theorem 7.A.2 and Lemma 7.B.5.

Theorem 7.B.7. The unique dominator tree of Gfout is Dout.

Proof. Trivial by Corollary 7.B.3.

Theorem 7.B.8. If f is in canonical form, then Fout reconstructed from (Hout, Lout, Xout)

is the unique loop nesting forest of Gfout .

132

Proof. Trivial by Corollary 7.B.3.

Theorem 7.B.9. If fout contains more than one definition of register r, then f also contains

more than one definition of register r.

Proof. All definitions introduced to fout are subsequently an argument to the rewrite uses

procedure which modifies all such definitions to assign a fresh register. No such violations

are introduced by the rewrite uses procedure by Theorem 7.A.5.

Theorem 7.B.10. Let ⟨fout, b
′, d′⟩ be a definition of register r and let l = loopf (b

′). If there

exists a use u of register r in fout occurring outside of l, then there exists a symmetric use

u′ of register r occurring outside of l in f .

Proof. First, suppose register r is also defined in f . Then the definition and uses of this

register are identical in f and fout and the violations are the same in both functions. Now,

suppose that register r is not defined in f . Then, the definition of r in fout must have been

introduced by an application of the rewrite uses procedure. If d′ is the definition symmetric

to definition d, then all uses of r outside of l were rewritten to use a register defined by a set

of dominating definitions outside of l (block parameters placed at exits of l). In this case, no

such violating use can exist in fout. If d′ is not the definition symmetric to definition d, then

d′ must have been a block parameter introduced by application of the rewrite uses procedure.

All such definitions are subject to a recursive application of the repair lcssa procedure which

by the same logic above and thus no such violating use can exist in fout.

133

7.C Edge Set Splitting

In this section, we refer to the split edge set operation (notated below). For specific details

(including names of intermediate components), refer to Figure 7.32.

(f,Df , HFf
, LFf

, XFf
)

split edge set−−−−−−−→
E={(bi,b′)}

(fout, Dout, Hout, Lout, Xout)

Theorem 7.C.1. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. We prove by filling in the slots of Template 6.A.1.

[Slot → Refinement] We refine the translation of blocks and streams by replacing ref-

erences to clones of block b′ with a reference to the relevant clone of block b′′ in all clones of

dom(E).

trans(⟨ft, bt⟩) =


bt[ℓb′/ℓb′′] bt ∈ C(dom(E))

bt otherwise

trans(⟨ft, bt, st, ŝt⟩) =


st[ℓb′/ℓb′′], trans(ŝt) bt ∈ C(dom(E))

st, trans(ŝt) otherwise

We add the following additional relationship between register contexts, which allows registers

of the fresh block in the register context of the parallel evaluation.

γ1 ⊆ γ2

134

[Slot → Invokability] If bt ∈ C(dom(E)), then bt2 = bt1 [ℓ
′
b/ℓ′′b]. Otherwise, bt2 = bt1 . In

either case, the unmodified streams and register contexts are consistent with the strengthened

induction without an additional step of evaluation.

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur at the terminator of a clone of a block in E.

Altered Switch We cover the case where the (n+ 1)-th step of evaluation of f transfers

control from block bt ∈ C(dom(E)). Let ref = ℓb′(ei) be the block reference taken by this

step of evaluation and let dom(param(bt1)) = ⟨ri⟩. For brevity, let T = term(bt).

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt⟩ | γ1 | µ′ | ν ′ | Ψ′; T, ŝt1)

→ (⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ŝt1)

By our strengthened inductive hypothesis, the n′-th step of evaluation of fout stops in function

ft2 = trans(ft1) on a terminator that transfers control from block trans(⟨ft1 , bt⟩), as shown

below, such that γ1 and γ2 are consistent with the strengthened induction. The (n′ + 1)-th

step of evaluation of fout proceeds by applications of rule E-Switch by first taking the

symmetric switch case. First, we consider the case where bt1 ∈ C(b′). Here, b′t ∈ C(b′′). Let

dom(param(b′t)) = ⟨r′i⟩ and, for brevity, let γ′2 = γ2[r′i 7→ γ2(ei)] and γ′′2 = γ′2[ri 7→ γ′2(r
′
i)].

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , trans(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; T [ℓb′/ℓb′′], trans(ŝt1))→

(⟨p[f/fout], ft2 , b
′
t⟩ | γ′2 | µ′ | ν ′ | Ψ′; branch ℓb′(r′i), trans(ŝt1))→

(⟨p[f/fout], ft2 , bt2⟩ | γ′′2 | µ′ | ν ′ | Ψ′; stream(bt2), ŝt1⟩))

Then, bt2 = trans(⟨ft1 , bt1⟩) and the set of register-value pairs added to register context γ2 is

a strict superset of the register-value pairs added to register context γ1.

135

Next, we consider the case where bt1 ̸∈ C(b′). Then, bt2 = trans(⟨ft1 , bt2⟩).

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , trans(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; T [ℓb′/ℓb′′], trans(ŝt1))→

(⟨p[f/fout], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; trans(⟨ft1 , bt1 , stream(bt1 , ŝt1⟩)))

The resulting register contexts are extended with the same register-value pair, which does

not violate the strengthened induction.

Altered Block Next, we cover the cases where the n-th step of evaluation of f is earlier

within a block b ∈ C(dom(E)) (but not yet at the terminator). This case is trivial by

application of Lemma 6.C.1.

[Slot ← Refinement] We refine the translation of blocks and streams by replacing ref-

erences to clones of block b′′ with a reference to the relevant clone of block b′.

trans(⟨ft, bt⟩) =



b′[−→σft] bt ∈ C(b′′)

bi[ℓb′′/ℓb′] bt ∈ (b′i)

bt otherwise

trans(⟨ft, bt, st, ŝt⟩) =



stream(b′)[−→σft], trans(ŝt) bt ∈ C(b′′)

st[ℓb′′/ℓb′], trans(ŝt) bt ∈ C(b′i)

st, trans(ŝt) otherwise

Now, we define the relationship following stating that registers occurring in γ2 but not

γ1 must be a parameter to a clone of block b′′. We additionally allow the register context γ2

to temporarily break the superset relation with register context γ1 when evaluation of fout is

within a clone of block b′ – it is not until the following step of evaluation that γ2 will assign

136

the set of registers defined by the parameters of the successor block. In the following, we

use ft and bt to mean the function and block in the same step of evaluation of function fout

as the register contexts occur.

γ1 ⊆ γ2 if bt ̸∈ C(b′) {(r, cv) ∈ γ1 | r ̸∈ {dom(param(succft(bt)))}} ⊆ γ2 if bt ∈ C(b′)

dom(γ2 \ γ1) ⊆
∪

bi∈C(b′′)

dom(param(bi))

[Slot ← Invokability] As the entry block is not modified, it cannot be the case that

bt2 ∈ C(b′′). If bt2 ∈ C(b′i), then bt1 = bi[
−−→σft2]. Otherwise, bt1 = bt2 . In either case, the

unmodified streams and register contexts are consistent with the strengthened induction

without an additional step of evaluation.

[Slot ← Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur at the terminator of a clone of a block in b′i or within a clone

of block b′′.

Altered Switch We cover the case where the (n′+1)-th step of evaluation of fout transfers

control from block bt ∈ C({b′i}). First, we consider the case where control is transferred to a

block bt2 ∈ C(b′′). Let dom(param(bt2)) = ⟨r′i⟩. For brevity, let T = term(bt).

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , bt⟩ | γ2 | µ′ | Ψ′; T, ŝt2)→

(⟨p[f/fout], ft2 , bt2⟩ | γ2[r′i 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2⟩)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans(ft2) on a terminator that transfers control from block trans−1(⟨ft2 , bt⟩), as shown

below, such that γ1 and γ2 are consistent with the strengthened induction. The (n+1)-th step

of evaluation of f proceeds by application of rule E-Switch by first taking the symmetric

137

switch case. Let dom(param(bt1)) = ⟨ri⟩. Here, bt1 ∈ C(b′) and the register contexts, while

gaining values for a disjoint set of registers, are consistent with the strengthened induction.

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft2 , bt⟩)⟩ | γ1 | µ′ | ν ′ | Ψ′; T, trans−1(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), trans−1(ŝt2))

Next, we consider the case where bt2 ̸∈ C(b′′). Let dom(param(bt2)) = ⟨ri⟩ and again let

T = term(bt) for brevity.

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , bt⟩ | γ2 | µ′ | Ψ′; T, ŝt2)→

(⟨p[f/fout], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2⟩)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans(ft2) on a terminator that transfers control from block trans−1(⟨ft2 , bt⟩), as shown

below, such that γ1 and γ2 are consistent with the strengthened induction. The (n+1)-th step

of evaluation of f proceeds by applications of rule E-Switch by first taking the symmetric

switch case. Here, bt2 = trans(⟨ft2 , bt2⟩) and the resulting register contexts are extended with

the same register-value pair, which does not violate the strengthened induction.

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft2 , bt⟩)⟩ | γ1 | µ′ | ν ′ | Ψ′; T, trans−1(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), trans−1(ŝt2))

Altered Block Next, we cover the cases where the n′-th step of evaluation of fout is earlier

within a block b ∈ C({b′i}) (but not yet at the terminator). This case is trivial by application

of Lemma 6.C.1.

138

Fresh Block First, we cover the case where the (n′ + 1)-th step of evaluation of fout

transfers control from block bt ∈ C(b′′) to a block bt2 ∈ C(b′).

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , bt⟩ | γ2 | µ′ | ν ′ | Ψ′; branch ℓb′(r′i), ŝt2)→

(⟨p[f/fout], ft2 , bt2⟩ | γ2[ri 7→ γ2(r′i)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans−1(ft2) on a terminator that transfers control from block trans−1(⟨ft2 , bt⟩), as

shown below, such that γ1 and γ2 are consistent with the strengthened induction. The

(n + 1)-th step of evaluation of f proceeds by application of rule E-Switch by taking the

symmetric switch case. Here, bt1 ∈ C(b′).

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft1 , bt⟩) | γ1 | µ′ | ν ′ | Ψ′; trans−1(⟨ft1 , bt, stream(bt)⟩, trans−1(ŝt2))

No additional steps of evaluation are necessary. The blocks and their unmodified streams are

consistent with the strengthened induction, and γ2 asymmetrically gains the set of registers

defined by the parameters of a block in C(b′′).

Corollary 7.C.2. The set of paths over block labels from ℓ0 to ℓb in Gfout for some block

b ∈ B where lab(b) = ℓb can be constructed by replacing the edge (lab(bi), ℓb′) by the path

⟨lab(bi), ℓb′′ , ℓb′⟩ for every block bi ∈ dom(E) in the set of such paths in Gf .

Because the input of the canonicalization procedure accepts a function which is not

necessarily in canonical form, we must prove an alternate form of Theorem 6.2.2 below.

For edge set splitting, we state that no new canonical form violation is introduced by the

procedure.

139

Theorem 7.C.3. Let Fout be the loop nesting forest reconstructed from (Hout, Lout, Xout).

Let l ∈ Ff and l′ ∈ Fout be loops that share a header label. If l′ violates a canonical form

property, then l must violate the same property.

Proof. We prove no additional property violations are introduced by contradiction:

1. Suppose loop l has a single latch in f but l′ has multiple latches in fout. For this to

occur, the edge (b′′, headerfout(l
′)) and (latchfout(l

′), headerfout(l
′)) must both exist in

Gfout such that headerfout(l
′) ≺fout b

′′. If (latchf (l), headerf (l)) is split, then no other

edge can be split by the input precondition and b′′ is the unique latch of l′. For any

other split, b′′ ̸∈ bodyfout(l
′) and headerfout(l

′) ̸≺fout b
′′.

2. Suppose loop l has a dedicated preheader but l′ does not. First, suppose b′′ is a second

preheader of l′. Then, b′′ ∈ predfout(headerfout(l
′)) and b′′ ̸∈ bodyfout(l) but splitting any

backedge of l places b′′ in bodyfout(l
′) and splitting (preheaderf (l), headerf (l)) makes b′′

the unique preheader of l′. Next, suppose that the unique preheader of l′ is not ded-

icated. Then, b′′ ∈ succfout(preheaderfout(l
′)) but splitting (preheaderf (l), headerf (l))

makes b′′ the dedicated preheader of l′.

3. Suppose e ∈ exitfout(l
′) is an undedicated exit of l′, but l has no undedicated exits. First,

suppose e = b′′. It must be the case that some bi ∈ bodyf (l) and some bi ̸∈ bodyf (l).

This implies that b′ ∈ exitf (l) is an undedicated exit of l. Otherwise, suppose e was

created by mutation of e ∈ B and the number of edges terminating at e in fout must

be strictly greater than the number of edges terminating at e in f . By Corollary 7.C.2,

no such additional edge exists in fout.

Theorem 7.C.4. If f is in LCSSA form, then fout is in LCSSA form.

140

Proof. Let l ∈ Ff and l′ ∈ Fout be loops with the same header label. If b′′ ̸∈ bodyf ′(l′), then

the set of uses that occur in l and l′ are identical. Otherwise, l′ additionally contains the

uses which occur in z, but the registers used are defined in b′′ and thus do not escape l′.

Theorem 7.C.5. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. As b′′ contains no uses of registers outside its own parameters, implicit(b′′) = ∅. As

succf ′(b′′) = {b′}, nonlocal(b′′) = nonlocal(b′). The fresh block b′′ has the same number and

type of parameters as block b′. The block reference from each block bi ∈ dom(E) to b′ is

well-typed by application of rule T-Ref. Therefore, the block reference from each block ti

to b′′ is also well-typed by application of rule T-Ref. Block b′′ is well-typed by application

of rules T-Block, T-Switch, and T-Ref. Any other rule used to type f differs only by

the inclusion of the fresh registers in the register environment typing, which Lemma 3.A.5

shows are not meaningful.

Theorem 7.C.6. The unique dominator tree of Gfout is Dout.

Proof. It follows from Corollary 7.C.2 that idomfout(blockfout(ℓb)) = blockfout(pD(b)) for each

block b ∈ B \{b′}. D and Dout differ only by the parent of ℓb′′ and (conditionally) the parent

of ℓb′ . As shown by Alstrup and Laurisden [9], idomfout(b
′′) = ncaD(predf ′(b′′)). Lastly,

idomf ′(blockf ′(ℓb′)) = z when E forms the set of forward edges terminating at b′ in Gf and

idomf ′(blockf ′(ℓb′)) = blockfout(lab(pD(b′))) otherwise.

Theorem 7.C.7. Fout reconstructed from (Hout, Lout, Xout) is the unique loop nesting forest

of Gfout .

Proof. It follows from Corollary 7.C.2 that for every strongly connected component C ⊆ B

of Gf , there is a strongly connected component C ′ of Gfout such that C ′ contains blocks

with a label of every block in C and (conditionally) block b′′. All edges terminating at b′′

141

are necessarily forward edges, as the fresh block b′′ cannot possibly dominate any block in

dom(E), thus b′′ cannot be a loop header. Then, b′′ must belong to the strongly connected

components described by the ancestors of l = ncaFf
({loopFf

(b) | b ∈ dom(E) ∪ {b′}}) as

headerfout(l) ;fout b
′′ and b′′ ;fout latchfout(l).

Let l ∈ Ff be the loop that describes C and l′ ∈ Fout be the loop that describes C ′. If

b′ ̸∈ exitf (l) or b′ ̸∈ bodyf (l) for every bi ∈ dom(E) (if no edge exiting l is split), then the exits

of l and the exits of l′ consist of the same labels. Otherwise, y ∈ exitf (l), b′ ̸;f latchf (l), b′′

is reachable by all blocks that can reach b′, and b′′ ̸;fout latchfout(l
′), therefore b′′ must be an

exit of l′. Then, b′ remains an exit of l′ only if b′′ ̸∈ b ;fout y
′ for some b ∈ bodyfout(l

′) (if not

all exits of l terminated at b′ are split).

7.D Unique Latch

In this section, we refer to the unique latch operation (notated below). For specific details

(including names of intermediate components), refer to Figure 7.42.

(f,Df , HFf
, LFf

, XFf
)

unique latch−−−−−−−→
l∈Ff

(fout, Dout, Hout, Lout, Xout)

Theorem 7.D.1. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. Trivial by Theorem 7.C.1.

Theorem 7.D.2. If f is in LCSSA form, then fout is in LCSSA form.

Proof. Trivial by Theorem 7.C.4.

Theorem 7.D.3. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

142

Proof. Trivial by Theorem 7.C.5.

Theorem 7.D.4. The unique dominator tree of Gfout is Dout.

Proof. Trivial by Theorem 7.C.6.

Theorem 7.D.5. If f is in canonical form, then Fout reconstructed from (Hout, Lout, Xout)

is the unique loop nesting forest of Gfout .

Proof. Trivial by Theorem 7.C.7.

Now, we show that each application of this operation makes a step of progress toward

canonicalizing the graph. We refer to blocks b′ and b′′ from Figure 7.32.

Theorem 7.D.6. Let Fout be the loop nesting forest reconstructed from (Hout, Lout, Xout).

Let l′ ∈ Fout be the loop that shares a header label with loop l. Then, |latchfout(l
′)| = 1.

Proof. The split edge set operation is applied such that b′ = headerf (l). By Corollary 7.C.2,

predfout(b
′) ∩ bodyfout(l

′) = latchfout(l
′) = {b′′}.

Corollary 7.D.7. By Theorem 7.C.3 and Theorem 7.D.6, if f has n distinct canonical form

violations, then fout has n− 1 distinct canonical form violations.

7.E Dedicated Preheader

In this section, we refer to the dedicate preheader transformation (notated below). For

specific details (including names of intermediate components), refer to Figure 7.44.

(f,Df , HFf
, LFf

, XFf
)

dedicate preheader−−−−−−−−−−→
l∈Ff

(fout, Dout, Hout, Lout, Xout)

Theorem 7.E.1. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

143

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. If headerf (l) is not the entry of f , then fout is constructed from an edge set split of f

and this property follows from Theorem 7.C.1. In the other case, we prove by filling in the

slots of Template 6.A.1.

[Slot Refinements] We add the following additional relationship between register con-

texts, which allows registers of the fresh block in the register context of the parallel evalua-

tion. We do not modify the trans relation from the template.

γ1 ⊆ γ2

[Slot → Invokability] Invocation of function f ′ ∈ C(fout) proceeds with the following

additional step of evaluation.

→ (⟨p[f/fout], ft2 , bt2⟩ | γ2[r′ti 7→ vti] | µ | ν | Ψ; branch ℓ0(r′i), trans(ŝt1))

→ (⟨p[f/fout], ft2 , bt1⟩ | γ2[ri 7→ r′i] | µ | ν | Ψ; stream(bt1), trans(ŝt1))

The resulting blocks are identical, and the set of register-value pairs added to register context

γ2 is a strict superset of the register-value pairs added to register context γ1.

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur at the entry of function f . Both the initial evaluation step of

the program (via the base case) and recursive calls to the function are trivially implied by

[Slot Invokability].

144

[Slot ← Refinement] We refine the translation of blocks and streams by mapping clones

of the new entry block b′ to clones of the original entry block h.

trans(⟨ft, bt⟩) =


h[−→σft] bt ∈ C(b′)

bt otherwise

trans(⟨ft, bt, (st, ŝt)⟩) =


stream(h)[−→σft], trans(ŝt) bt ∈ C(b′)

st, trans(ŝt) otherwise

Now, we define the following relationship stating that registers occurring in γ2 but not γ1

must be a parameter to a clone of block b′. We additionally allow the register context γ2 to

temporarily break the superset relation with register context γ1 when evaluation of fout is

within a clone of block b′. It is not until the following step of evaluation that γ2 will assign

the set of registers defined by the parameters of the successor block. In the following, we

use ft and bt to mean the function and block in the same step of evaluation of function fout

as the register contexts occur.

γ1 ⊆ γ2 if bt ̸∈ C(b′) {(r, cv) ∈ γ1 | r ̸∈ {dom(param(succft(bt)))}} ⊆ γ2 if bt ∈ C(b′)

dom(γ2 \ γ1) ⊆
∪

bi∈C(b′)

dom(param(bi))

[Slot ← Invokability] As a new entry block was created, bt2 ∈ C(b′) and bt1 ∈ C(h). The

unmodified streams are consistent with the strengthened induction without an additional

step of evaluation, as the translation of blocks and streams simply cut out clones of block

b′ in the evaluation of f . The resulting register contexts gain the set of registers defined by

the parameters of blocks bt2 and bt1 for evaluation of function fout and f , respectively. As

evaluation of function fout remains in block b′, both of these contexts are consistent with the

strengthened induction.

145

[Slot ← Asymmetric Evaluation] By the refined trans−1 relation, all temporarily di-

verging steps of evaluation occur at the entry of function fout. Both the initial evaluation

step of the program (via the base case) and recursive calls to the function are trivially implied

by [Slot Invokability].

If headerf (l) is not the entry of f , then fout is constructed from an edge set split of f

and the following maintenance theorems follow from application of Theorem 7.C.7 through

Theorem 7.C.4. In the following proofs we assume headerf (l) is the entry of f .

Corollary 7.E.2. The set of paths over bock labels from ℓ any block reachable in Gfout can

be constructed by prepending the label ℓ′0 to the set of such paths in Gf .

Theorem 7.E.3. If f is in LCSSA form, then fout is in LCSSA form.

Proof. Block b′ introduces uses which are all defined within block b′.

Theorem 7.E.4. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. Otherwise, implicit(b′) = ∅ as b′ contains no uses of registers outside its own param-

eters and nonlocal(b′) = nonlocal(headerf (l)) as succfout(b
′) = {headerf (l)}. The fresh block

b′ has the same number and type of parameters as the header of f . Block b′ is well-typed

by application of rules T-Block, T-Switch, and T-Ref. Any other rule used to type f

differs only by the inclusion of the fresh registers in the register environment typing, which

Lemma 3.A.5 shows are not meaningful.

Theorem 7.E.5. The unique dominator tree of Gfout is Dout.

Proof. Otherwise, it follows from Corollary 7.E.2 that b′ dominates all blocks in B′ and

idomfout(blockfout(ℓb)) = blockfout(pD(b)) for each block b ∈ B. The only difference between

D and Dout is the root, which is b′ in Dout.

146

Theorem 7.E.6. Fout reconstructed from (Hout, Lout, Xout) is the unique loop nesting forest

of Gfout .

Proof. Otherwise, it follows from Corollary 7.E.2 that the strongly connected components

of Gf and Gfout are isomorphic. F and Fout are similarly isomorphic.

Now, we show that this each application of this operation makes progress toward canon-

icalizing the graph (at this point we no longer assume that headerf (l) is the entry of f). In

the following, we refer to blocks b′ and b′′ from Figure 7.32.

Theorem 7.E.7. Let Fout be the loop nesting forest reconstructed from (Hout, Lout, Xout).

Let l′ ∈ F and l′′ ∈ Fout be loops that share a header label. If l′ violates a canonical form

property, then l must violate the same property.

Proof. If headerf (l) is not the entry of f , then fout is constructed from an edge set split of f

and this property follows from Theorem 7.C.3. Otherwise, l′′ must violate the same unique

latch and dedicated exit properties as l′, as E(Gfout) = E(Gf)∪{(b′, entry(f))}. If l′′ has no

dedicated preheader, then l′ ̸= l by Theorem 7.E.8 and l′ violates the dedicated preheader

property as header(l′) ̸= entryf (f) and predfout(blockfout(lab(l′))) = predf (headerf (l′)).

Theorem 7.E.8. Let Fout be the loop nesting forest reconstructed from (Hout, Lout, Xout).

Let l′ ∈ Fout be the loop that has the header label lab(l). Then, l′ has a unique dedicated

preheader in fout.

Proof. b′ = headerf ′(l′) and predfout(b
′) = latchfout(l

′) ∪ {b′′}. If headerf (l) is not the entry

of f then this property follows from Corollary 7.C.2. Otherwise, this property follows from

Corollary 7.E.2 otherwise.

Corollary 7.E.9. By Theorem 7.E.7 and Theorem 7.D.6, if f has n distinct canonical form

violations, then fout has n− 1 distinct canonical form violations.

147

7.F Dedicated Exits

In this section, we refer to the dedicate exit operation (notated below). For specific details

(including names of intermediate components), refer to Figure 7.46.

(f,Df , HFf
, LFf

, XFf
)

dedicate exit−−−−−−−−−→
l∈Ff , e∈exitf (l)

(fout, Dout, Hout, Lout, Xout)

Theorem 7.F.1. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. Trivial by Theorem 7.C.1.

Theorem 7.F.2. If f is in LCSSA form, then fout is in LCSSA form.

Proof. Trivial by Theorem 7.C.4.

Theorem 7.F.3. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. Trivial by Theorem 7.C.5.

Theorem 7.F.4. The unique dominator tree of Gfout is Dout.

Proof. Trivial by Theorem 7.C.6.

Theorem 7.F.5. If f is in canonical form, then Fout reconstructed from (Hout, Lout, Xout) is

the unique loop nesting forest of Gfout .

Proof. Trivial by Theorem 7.C.7.

Now, we show that each application of this operation makes a step of progress toward

canonicalizing the graph. In the following, we refer to blocks b′ and b′′ from Figure 7.32.

148

Theorem 7.F.6. Let Fout be the loop nesting forest reconstructed from (Hout, Lout, Xout).

Let l′ ∈ Fout be the loop that shares a header label with loop l. Then, assuming l has k

undedicated exits, l′ has k − 1 undedicated exits with respect to fout.

Proof. Block b′′ occurs before block e on every path from any block b ∈ bodyfout(l
′) by

Corollary 7.C.2. Therefore, e (an undedicated exit of l) is not an exit of l′. Additionally, b′′

is a dedicated exit of l′ as dom(E) ⊆ bodyf (l).

Corollary 7.F.7. By Theorem 7.C.3 and Theorem 7.D.6, if f has n distinct canonical form

violations, then fout has n− 1 distinct canonical form violations.

149

8 Operations

In this chapter we define a set of procedures that are used by the transformations present in

Chapter 9.

8.1 Block Ejection

During a transformation that may change the set of paths over the control flow graph, a

block may find itself in the wrong loop. This situation can be easily created, for example,

by simply deleting an edge and removing the only path from a block to the latch of its loop.

This section details the repair operation when such a situation occurs.

This operation takes as input a claimed loop nesting forest F that may not be equivalent

to a deconstruction of the correct loop nesting forest Ff . Here, we make the following five

assumptions about the nature of the input.

1. The actual loops of the function and loops in the claimed loop nesting forest have a

one-to-one correspondence, although the loop may have an inaccurate parent, body

set, or exit set. Formally, {lab(l) | l ∈ Ff} = {lab(l) | l ∈ F}.

2. The body sets of the claimed loop nesting forest maintain a subset lattice (just as

well-formed loop nesting forests do). Formally, body(l) ⊂ body(pF (l)) for every l ∈ F

where l ̸= l∅.

3. The body set of each violating loop in the claimed loop nesting forest is a superset of the

body set of the loop in the function with the same header. Formally, body(l′) ⊇ body(l)

for every l′ ∈ Ff , l ∈ F such that lab(l′) = lab(l).

150

4. The exit set of each violating loop in the claimed loop nesting forest is correct with

respect to body set of the same loop – specifically, the exit set must consist of all the

blocks that have a predecessor in the body set but are not themselves in the body set.

Formally, exit(l) = {b ∈ body(l) | b ̸∈ body(l) ∧ pred(b) ∩ body(l) ̸= ∅} for every l ∈ F .

5. Every loop with an inaccurate body set is an ancestor of the deepest inaccurate loop

in the claimed loop nesting forest. Alternatively, the set of all loops with an inaccurate

body set can be found on a single path in the claimed loop nesting forest.

These assumptions may appear rather strict, but are the natural properties of the loop

nesting forest after an edge deletion and after insertion of blocks on an edge (specifically, see

function inlining discussed in Section 9.42). Figure 8.11 illustrates a repair of such a loop

nesting forest. The graph of this example may have been created by removing the edge (f, d)

or by inserting the subgraph consisting of blocks e, f , and h on the edge (c, g), among other

possibilities. To repair the graph, block e is ejected from the blue loop (but remains in the

red loop as there exists a path to the latch), and blocks f and h are ejected from both loops.

This transformation also alters the exit sets so that g is no longer an exit of the red loop

but f is, and e becomes the sole exit of the red loop. Notice that as the entire body of the

green loop is ejected from its inner loop, the parents of the loops in the loop nesting forest

also change. Notice that the exit sets of loops may also need to be repaired.

This operation is formally described by Figure 8.12. Note that we pass in the loop

triple (HF , LF , XF) distinct from (HFf
, LFf

, XFf
), as the input loop nesting forest does not

necessarily describe the input function. It is recursive in nature and begins in the deepest

violating loop, working its way up to a root of the forest (the no-op base case). For each

loop, we partition the body of the loop into the set Bin, the true body of the loop, and the

set Bout, the extraneous blocks. The extraneous blocks are pruned from the body of the

loop and, if a loop structure was ejected with it, then children loop entries are adopted by

151

ab

c

d e

f

g

h

(a) The broken loop nesting forest.

ab

c

d e

f

g

h

(b) The repaired loop nesting forest.

Figure 8.11: Repairing loop nesting forest by ejecting blocks from a loop.

the loop’s current parent. In either case, this does not remove any blocks from the body

of the loop’s current parent (which is taken care of in a subsequent call). Then, the loop’s

exit set is recalculated to determine which newly ejected blocks are new exits and which

old exits no longer have predecessors in the loop body.

After ejection, the dedicated exit property and loop-closed SSA form may be broken.

Figure 8.13 illustrates the former case in which a block and one of its predecessors are

ejected from the loop. The dedicate exit operation discussed in Section 7.4.3 is applied over

violating exit blocks in order to repair the temporary violation of canonical form. Figure 8.14

illustrates the latter case in which a block containing a legal use of a register is ejected

from the loop that defines that register. The LCSSA reconstruction operation discussed in

Section 7.2 is applied over such violating uses to repair the temporary violation of LCSSA

form.

8.2 Edge Deletion

A program may have a control flow edge that is provably dead such that no set of inputs

will cause the evaluation of the program to take that edge. Such edges often occur as a

152

Dout = Df Hout = HF Lout = LF Xout = XF

(f,Df , HF , LF , XF)
eject−−→
⟨l∅⟩

(fout, Dout, Hout, Lout, Xout)

(lp = l∅) ∨ (l ⊂ lp) Bin = {b ∈ bodyf (l) | b ;Gf ⟨bodyf (l)⟩ latchf (l)}

Bout = bodyf (l) \Bin H ′ = H[headerf (l′) 7→ headerf (lp) | l′ ∈ F ∧ headerf (l′) ∈ Bout]

L′ = L[b 7→ lp | b ∈ Bout] Xold = {(ℓ, ℓh) ∈ X | predf (blockf (ℓ)) ∩Bin = ∅}

Xnew = {(lab(b), lab(l)) | b ∈ Bout, predf (b) ∩Bin ̸= ∅} X ′ = X \Xold ∪Xnew

exits = {blockf (ℓ1) | (ℓ1, ℓh) ∈ X ′ ∧ predf (blockf (ℓ1)) ∩Bout = ∅}

defs = {d ∈ deff (r) | d occurs in block of Bin ∧ use of r occurs in block of Bout}

(f,Df , H
′, L′, X ′)

dedicate exits−−−−−−−−→
{(l,e)|e∈exits}

∗
· repair lcssa−−−−−−−→
{(l,d)|d∈defs}

∗
(f ′, D′, H ′′, L′′, X ′′)

(f ′, D′, H ′′, L′′, X ′′)
eject−−−−−→
⟨lp,...,l∅⟩

(fout, Dout, Hout, Lout, Xout)

(f,Df , HF , LF , XF)
eject−−−−−→

⟨l,lp,...,l∅⟩
(fout, Dout, Hout, Lout, Xout)

Figure 8.12: Ejecting nodes to restore loop nesting forest.

result of another transformation, such as function inlining or loop unswitching. Removing

this edge results in a reduction of program size, and may allow additional opportunities for

optimization (e.g. reducing the size of a function below the inline limit, removing dead side

effects from a loop for more precise analysis). This section details the restoration of canonical

form after the deletion of such a dead edge.

The deletion of an edge has what appears to be non-local changes to the graph. Many

a

b

c

d

e a

b

c

d

e

Figure 8.13: Block ejection creating an undedicated exit.

153

r2 ← r1 < 10
switch r2 true 7→ b() c()

r3 ← r1 + 1
branch a(r3)

r4 ← r1
. . .

a(r1 : int)() b()()

c()()

r2 ← r1 < 10
switch r2 true 7→ b() c()

r3 ← r1 + 1
branch a(r3)

r4 ← r1
. . .

a(r1 : int)() b()()

c()()

Figure 8.14: Block ejection creating an LCSSA violation.

nodes can become unreachable if the only paths to them from the block contain the deleted

edge. Entire loops may be destroyed and unnested from their parent. Figure 8.21 illustrates

such changes. Removing the edge (b, d) from the initial graph causes the intermediate red

loop to lose its backedge, causing the set of blocks composing the loop body to become

unconnected. The blue and green loops survive, but the inner loop is no longer nested

within the outer loop as there is no longer a path that connects the inner loop to the latch

of the outer loop. Removing the edge (e, f) from the initial graph causes part of the body

of the inner loop to spill out into its parent loops. Blocks that once belonged to the inner

loop no longer have a path to the loop’s latch, forcing them out into upper levels of the loop

nesting forest.

This operation requires the condition that, in order to remove edge (a, b) from the graph,

block a must transfer control to block b through a switch case whose value is unit. This

ensures that the deletion of an edge neither creates an unterminated block by removing the

last edge out of a block, nor arbitrarily changes the semantics of the program (as this case

can never be evaluated).

We present this operation in two parts. Section 8.2.1 presents the situation where the

paths of the graph change only in multiplicity, but the set of paths over the graph are

otherwise unchanged. Section 8.2.2 presents the situation where the last edge between two

adjacent blocks is removed.

154

a

b

c d

ef

(a) The initial graph.

a

b

c

f

(b) Graph after removing the edge (b, d).

a

b

c

f

d

e

(c) Graph after removing the edge (e, f).

Figure 8.21: Examples of loop structure changes that can occur after an edge deletion.

8.2.1 Change in Path Multiplicity

First, we cover the situation where one of several edges between blocks a and b is deleted.

This case of the operation is formally described by Figure 8.22.

The bulk of the work is offloaded onto an operation that removes a block reference from

the terminator of block a. The case that is removed from the switch must refer to block b

and must have a switch value of unit, but does not necessarily need to be the first or only

such case in the terminator. The only interesting part of this operation is the construction of

155

(a, b) ∈k E(f) k > 1

f
delete case−−−−−−→

(a,b)
fout Dout = Df Hout = HFf

Lout = LFf
Xout = XFf

(f,Df , HFf
, LFf

, XFf
)

delete edge−−−−−−→
(a,b)

(fout, Dout, Hout, Lout, Xout)

f = (ℓ, t, B, ℓ0) term(a) = switch e cvi 7→ refi (unit 7→ refb) cvj 7→ refj refd
lab(b) = ℓb refb = ℓb(ek)

T = switch e cvi 7→ refi cvj 7→ refj refd imp = {(r : t) ∈ implicit(a) | usea(r) ̸= {refb}}

a′ = (lab(a), param(a), imp, inst(a) ∪ ⟨T ⟩) B′ = B \ {a} ∪ {a′} fout = (ℓ, t, B′, ℓ0)

f
delete case−−−−−−→

(a,b)
fout

Figure 8.22: Replacing a dead block reference with a syntactically unreachable switch case.

the implicit values of the modified block a′ that are constructed by removing typed registers

from implicit(a), whose only use occurred in the removed block reference.

8.2.2 Change in Paths

Now, we cover the situation where the last edge between blocks a and b are deleted. We

organize this situation in two parts. First, we remove the last block reference to block

b from block a via delete case operation. Then, we prune the loop body, exit, and nesting

structures to remove references to blocks that are unreachable and remove references to loops

that no longer have a stable backedge. This case of the operation is described by Figure 8.23.

Notice that this transformation also takes a dominator tree and loop nesting forest that do

not necessarily describe the input function. The resulting loop triple (H ′, L′, X ′) forms a

good approximation of the correct resulting function (in which the properties of the input

of the eject transformation discussed in Section 8.1 are validated). Finally, we use the eject

procedure presented in Section 8.1 to perform local updates over the loop nesting structures

156

(a, b) ∈1 E(f)

f
delete case−−−−−−→

(a,b)
f ′ (f ′, Df , HFf

, LFf
, XFf

)
post-delete edge−−−−−−−−−→

(a,b)
(fout, Dout, Hout, Lout, Xout)

(f,Df , HFf
, LFf

, XFf
)

delete edge−−−−−−→
(a,b)

(fout, Dout, Hout, Lout, Xout)

(f,D)
repair dominator−−−−−−−−−→

(a,b)
(R,D′) f = (ℓ, t, B, ℓ0) B′ = B \R

f ′ = (ℓ, t, B′, ℓ0) dead = {l ∈ F | latchf (l) ∈ R ∨ (a = latchf (l) ∧ b = headerf (l))}

A = {l 7→ p | l ∈ F ∧ p is lowest ancestor of l such that p ̸∈ dead}

H ′ = {(lab(headerf (l)), lab(headerf (A(pF (l))))) | l ∈ F \ dead}

L′ = {(ℓ, lab(A(l))) | (ℓ, lab(l)) ∈ L ∧ blockf (ℓ) ̸∈ R}

X ′ = {(ℓ, lab(l)) ∈ X | blockf (ℓ) ̸∈ R ∧ l ̸∈ dead}

(f ′, D′, H ′, L′, X ′)
eject−−−−−−−−−−−−−−−−−−→

⟨A(loop(a)),A(A(loop(a))),...,l∅⟩
(fout, Dout, Hout, Lout, Xout)

(f,D,HF , LF , XF)
post-delete edge−−−−−−−−−→

(a,b)
(fout, Dout, Hout, Lout, Xout)

Figure 8.23: Restoring canonical properties after deletion of the dead edge (a, b).

to correct inconsistencies in the approximate function.

This case of the operation is formally described by Figure 8.23. Notice that the input

dominator tree and loop nesting triple are not necessarily the correct structures for the input

function. To repair the dominator tree after edge deletion, we use the algorithm described

by Ramalingam and Reps [53] that yields a set of unreachable blocks, denoted by R, and a

dominator tree D′.

The intermediate function f ′ is then constructed by simply removing all unreachable

blocks in the set R. No block or control flow edge is otherwise modified. Thus, for all

ℓ ∈ {lab(b) | b ∈ B \R}, blockf (ℓ) = blockf ′(ℓ). Every block in B \R is necessarily reachable

from blockf ′(ℓ0) in Gf ′ and D′ is the correct dominator tree of f ′.

Let dead be the set of loops from the claimed loop nesting forest F whose backedges are

157

unreachable after the deletion of edge (a, b). The triple (H ′, L′, X ′) describing an approx-

imate loop structure of f ′ is constructed by removing all references to unreachable blocks

and removing all references to loops in dead from the loop structure of f . The set H ′ is

constructed so that a live loop with a dead parent is made a child of its nearest living an-

cestor. The set L′ is constructed so that a block b such that loopf (b) = l ∈ dead remains

in the bodies of its living ancestors. The set X ′ is constructed by removing references to

unreachable blocks and removing references to loops that were destroyed by the deletion of

their latch.

8.3 Loop Duplication

In contrast to deletion, a transformation may also add additional paths and/or blocks to an

existing control flow graph. However, a valid transformation will never add an edge between

two arbitrary blocks of an existing graph, nor make an arbitrary subgraph reachable from

an existing subgraph. Instead, additive transformations generally start by duplicating a

portion of an existing graph (either the same function in the case of loop transformations, or

another function in the case of function inlining), then linking the copy of the subgraph into

the existing control flow graph. This section details the common operation of duplicating

a targeted subgraph induced by the body of a loop. As linking the copy of the subgraph

differs with the transformation context, the remainder of the operation will be detailed in

Chapter 9.

This operation is formally described by Figure 8.31. It takes as input a function along

with its dominator tree and loop nesting forest as well as a target loop l. The resulting

function contains a copy of the blocks contained in loop l as well as a copy of any edges leaving

a duplicated block. Specifically, if an edge from a duplicated block to another duplicated

158

σL = {(lab(b), ℓ′i) | b ∈ bodyf (l)}

ℓ′i is fresh σB = {(b, (σL(lab(b)), param(b), implicit(b), stream(b)[σL])) | b ∈ bodyf (l)}

f = (ℓ, t, B, ℓ0) B′ = B ∪ {b′ | (b, b′) ∈ σB}

fout = (ℓ, t, B′, ℓ0) l′ = l[σL] Dout = Df ∪ {(lab(σB(b)), σL(pD(b))) | b ∈ bodyf (l)}

headers = {lab(header(l′)) | l′ ∈ Ff⟨l⟩}

Hout = HFf
∪ {(ℓc, ℓp) ∈ HFf

| ℓc ∈ headers}[σL]

Lout = LFf
∪ {(ℓb, ℓh) ∈ LFf

| ℓh ∈ headers}[σL]

Xout = XFf
∪ {(ℓb, ℓh) ∈ XFf

| lh ∈ headers}[σL]

(f,Df , HFf
, LFf

, XFf
)

duplicate−−−−−→
l

(fout, Dout, Hout, Lout, Xout), (l
′, σL)

Figure 8.31: Duplicating the body (and auxiliary data structures) of a loop to be later linked

into the graph.

block exists, it will also exist between the two copies, and if an edge from a duplicated block

to a non-duplicated block exists, it will also exist between the copied block and the original

block. However, no edges are created such that a non-duplicated block points to a new block.

Thus, the resulting function contains a strongly connected component unreachable from the

entry block. This behavior is illustrated in Figure 8.32.

In order to duplicate blocks, a mapping σL from block labels to block labels is populated.

h

a b

l

e1 e2

h′

a′ b′

l′

Figure 8.32: Illustration of new edges after duplicating a loop structure. The copy of the
subgraph is enclosed in a gray box, unreachable from the original graph.

159

h

a

c

b

d

l

e1 e2

h′

a′

c′

b′

d′

l′

h

a bl

c de1 e2

h′

a′ b′l′

c′ d′

Figure 8.33: Illustration of the new dominator subtree (enclosed in a gray box) after dupli-
cating the body of a loop.

This mapping correlates the label of a duplicated block to the label of its copy. When a

block is duplicated, all block label references are substituted with respect to σL. The pair of

originating blocks and its clone (b, b′) are added to the mapping σB. This implicitly creates

the edges as described above – targets of a copied block’s terminator are translated so that

the branching structure of the subgraph remains symmetric to the original. The populated

mapping is also returned as a side-effect of the operation.

The resulting dominator tree is the input dominator tree unioned with the dominator

tree of the cloned subgraph. The new subtree is placed such that header(l) and its dupli-

cated block share the same immediate dominator. This will generally be correct, but some

transformations (loop peeling, to name one) may need to refine this assumption. It is also

worth nothing that no existing block changes dominators with respect to the entry block of

the function. Figure 8.33 illustrates the duplication of the dominator tree.

The parent , body set , and exit set of each loop nested under l are duplicated and

translated with respect to the block relation σL. This results in a loop nesting forest with

an additional root, returned as l′, encoding the structure of the not-yet-reachable subgraph.

Figure 8.34 illustrates the duplication of the loop nesting forest.

160

h

a

c

b

d f

l

e1 e2

h′

a′ b′

c′ d′ f ′

l′

h

c d

h′

c′ d′

Figure 8.34: Illustration of the new loop nesting forest subtree (enclosed in a gray box) after
duplicating the body of the outermost shown loop.

161

Appendix

Here we provide the proofs of maintenance properties of operations presented in Chapter 8.

8.A Block Ejection

In this section, we refer the eject transformation (notated below). For specific details (in-

cluding names of intermediate components), refer to Figure 8.12.

(f,Df , HF , LF , XF)
eject−−−−−→

⟨l,lp,...,l∅⟩
(fout, Dout, Hout, Lout, Xout)

Theorem 8.A.1. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. Trivial by repeated application of Theorem 7.F.1 and Theorem 7.B.2.

Theorem 8.A.2. If f is in canonical form with respect to the F , then fout is in canonical

form (with respect to Ffout).

Proof. Let l′ ∈ Fout and l′′ ∈ F be loops that share a header label. We prove no property

violations for loop l′ exist. First, l′ and l′′ have the same dedicated preheaders and latch. As

these blocks are not in violation in F , they are also not in violation in Fout. Now, suppose

162

that e ∈ exitfout(l
′) is not a dedicated exit of l′. To remain undedicated, it must be the case

that lab(e) ̸∈ exit. This means that predf (e)∩Bout = ∅ and the predecessor that causes e to

be undedicated to l′ also makes it undedicated to l′′.

In the following, we refer to the triples (H ′, L′, X ′) and (H ′′, L′′, X ′′), the sets of blocks

Bin, Bout, and exit, and the set of definitions defs from Figure 8.12.

Theorem 8.A.3. If all uses of each register defined in function f occur within the same

loop of F as its definition, then fout is in LCSSA form.

Proof. Let l′ ∈ Fout and l′′ ∈ F be loops that share a header label such that loop l′ contains

a definition d of register r and a use of r occurs in block b ̸∈ bodyfout(l). By construction

of Fout, body(l′) ⊆ body(l′′). If b ̸∈ Bout, then by assumption that uses of r is closed with

respect to F , no such uses of r occur outside of l′. Otherwise, d ∈ defs by construction and

all such uses of r occurring outside of l′ are replaced with fresh registers defined outside of

l′ by application of the repair lcssa operation.

Theorem 8.A.4. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. Trivial by repeated application of Theorem 7.F.1 and Theorem 7.B.2.

Theorem 8.A.5. The unique dominator tree of Gfout is Dout.

Proof. Trivial by repeated application of Theorem 7.F.1.

In the following, let F ′ be the intermediate loop nesting forest (in which body sets, exit

sets, and loop nesting is altered) reconstructed from (H ′, L′, X ′), let F ′′ be the loop nesting

forest (in which exits are re-dedicated and LCSSA violations are repaired) reconstructed

from (H ′′, L′′, X ′′), and let Fout be the loop nesting forest (yielded from the recursive call)

reconstructed from (Hout, Lout, Xout). Now, we show that eject can repair the input loop

163

nesting forest as long as it is broken in the expected manner with respect to the input

function. We prove this in three parts: once for F ′, once for F ′′, and once for Fout.

Lemma 8.A.6. Let l′ ∈ F be a loop nested in l. If b ∈ body(l′) ∈ O, then body(l′) ⊆ O.

Proof. Suppose another block b′ ∈ body(l′) ̸∈ O. Then, there is a path from b′ to the latch

of l in the subgraph induced by body(l). However, as body(l′) is a strongly connected subset

of body(l), there must be such a path for b as well.

Lemma 8.A.7. Let l′ ∈ F ′ and l′′ ∈ Ff be loops such that lab(l′) = lab(l′′) = lab(l). Then, if

F validates the five assumptions given in Section 8.1, the body and exit sets of l′ are correct

with respect to function f and F ′ validates the same assumptions.

Proof. First, we show that l′ has the correct body set. Suppose this is not the case and

b ∈ body(l′) \ body(l′′) (i.e. the body set of l′ contains an extra block). However, b’s presence

in body(l′) ensures a path from b to the latch of l′ so it must be the case that b ∈ body(l′′). In

the other direction, suppose b ∈ body(l′′) \ body(l′) (i.e. the body set of l′ is missing a block).

By assumption, body(l) ⊇ body(l′′) and body(l′) = body(l)\O by construction. Thus, it must

be the case that b ∈ O. However, b’s presence in O indicates the absence of a path from b

to the latch of l′, so it must be the case that b ̸∈ body(l′′).

Next, we show that l′ has the correct exit set. Suppose this is not the case and b ∈

exit(l′) \ exit(l′′) (i.e. the exit set of l′ contains an extra block). As b is not an exit of l′′, then

either b ∈ body(l′′) or pred(b) ∩ body(l′′) = ∅. In the former case, b ∈ I and b ̸∈ exit(l′) as

(lab(b), lab(l)) ̸∈ X and b ̸∈ O. The latter case cannot occur, as X ′ must have a predecessor

in I by construction. In the other direction, suppose b ∈ exit(l′) \ exit(l′′) (i.e. the exit set of

l′′ is missing a block). By construction of X ′, b ̸∈ O and b ̸∈ exit(l). Then, pred(b) ∩ I = ∅

and b ̸∈ exit(l′).

Finally, we show that F ′ validates the same five assumptions as F .

164

1. F ′ neither adds a loop not present in F nor removes a loop present in F , therefore

{lab(l) | l ∈ Ff} = {lab(l) | l ∈ F ′}.

2. The body sets of F ′ are also a subset lattice. The removal blocks from the body set

of l does not violate the subset property between l and pF (l), but it may violate the

subset property between l and one if its children, lc. By Lemma 8.A.6, if any block of

lc is ejected from l then all blocks of lc are ejected and lc becomes immediately nested

in pF (l) by construction of H ′. This change also does not violate the subset property

of the forest as body(lc) ⊆ body(pF (l)).

3. The remaining violating loops were not modified and trivially retain this property.

4. The remaining violating loops were not modified and trivially retain this property.

5. No body sets apart from loop l were modified (nor were any paths through the graph),

so no additional violation could have been introduced. Loop l no longer has a violation,

so the remaining violations must all occur on the ancestor path to pF ′(l).

Lemma 8.A.8. Let l′ ∈ F ′ and l′′ ∈ Ff be loops such that lab(l′) = lab(l′′) = lab(l). Then, if

F validates the five assumptions given in Section 8.1, the body and exit sets of l′ are correct

with respect to function f and F ′′ validates the same assumptions.

Proof. F ′′ is constructed from F ′ through a sequence of dedicate exit operations. A series of

repair lcssa operations are also performed, but do not modify the control flow paths or the

loops of its input. To show that these operations maintain these loop properties, we look

directly at the split edge set operations performed exit dedication. In the following, we refer

to block b′′ from Figure 7.32 and the set exits from Figure 8.12.

165

For every correct exit e (in X ′) that has a predecessor in O, the edges between blocks

in pred(e) ∩ I and e are split. This places a fresh block b′′ into the body set of the nearest

common ancestor of l and the loop containing e, adds b′′ to the exit sets of the loops in which

e is an exit, and removes e as an exit from loops in which b′′ occurs on every path a block

in the loop to e. Loop l′′ must have the correct body set as l′ has the correct body set by

Lemma 8.A.7 and the body set of l′ was not modified (only the body set of an ancestor of

l′ could be). Loop l′ has the correct exit set by the same lemma and the set exit is the set

of exits which are undedicated. The split edge set operation replaces precisely these blocks

with fresh, dedicated exits in this set. No additional edges leaving the body of this loop are

introduced, and therefore l′′ must have the correct exit set.

Finally, we show that F ′′ validates the same five assumptions as F (or, equivalently by

Lemma 8.A.7, the same five assumptions as F ′).

1. The split edge set operation does not change the set of loops in the forest, therefore

{lab(l) | l ∈ Ff} = {lab(l) | l ∈ F ′′}.

2. The addition of each new block was added uniformly to one block and all of its ances-

tors, therefore the resulting forest remains a subset lattice.

3. By Theorem 7.C.7, each additional block added to the function is also added to the

correct body set in the input loop nesting forest. Therefore, the body set of each

violating loop remains a superset of the body set of the corresponding loop in the

function.

4. After the addition of a block, split edge set operation repairs exit sets using only pre-

decessor information and the body sets of the claimed loop nesting forest. It follows by

Theorem 7.C.7 that the modified exit sets should remain consistent with the modified

body sets of the claimed loop nesting forest.

166

5. For the same reasons as above, any claimed loop in the forest with an accurate body set

remains accurate after the operation and, as all loop exit sets are consistent with the

body set, the same loops have an accurate exit set. Therefore, no additional violations

are introduced and any violating loop in the claimed loop nesting forest remains on

one ancestor path.

Theorem 8.A.9. If f is in canonical form, F validates the five assumptions given in Sec-

tion 8.1, and l is a loop with an inaccurate body set, exit set, or parent, then Fout is the

unique loop nesting forest of Gfout .

Proof. The loop nesting forest Fout is constructed by applying the eject procedure to lp(l)

with F ′′ as the input loop nesting forest. By Lemma 8.A.8, the forest F ′′ validates the five

assumptions given in Section 8.1. By recursive application of this procedure, the resulting

loop nesting forest also validates these assumptions. As each violating loop occurs on the

same ancestor path and l is a violating loop, this set of applications operate directly on all

possible violations. By Lemma 8.A.7 and Lemma 8.A.8, the loop nesting forest is repaired so

that the body and exit sets of the target loop of the procedure is correct. It follows that once

the base case is reached, no loop has an inaccurate body set. Additionally, as the output

loop nesting forest forms a subset lattice, the nesting properties must also be correct.

8.B Delete Edge

We first prove that the evaluation of a function after application of the delete case transforma-

tion (notated below) remains the same. For specific details (including names of intermediate

167

components), refer to Figure 8.22.

f
delete case−−−−−−→

a,b
fout

Lemma 8.B.1. Assume p | f is well-typed. If f can be evaluated n steps with some register

context, memory context, nondeterminism state, and effects list, then fout can be evaluated

for n′ steps with the same initial context and arguments and reach a state with the same

memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. We prove by filling in the slots of Template 6.A.1.

[Slot → Refinement] We refine the translation of blocks by mapping clones of block a

to clones of block a′. We refine the translation of streams by removing the unmatchable

block reference from clones of block a.

trans(⟨ft, bt⟩) =


a′[−→σft] bt ∈ C(a)

bt otherwise

trans(⟨ft, bt, (st, Tt, ŝt)⟩) =


(st, T [

−→σft]), trans(ŝt) bt ∈ C(a)

(st, Tt), trans(ŝt) otherwise

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot → Invokability] If bt1 ∈ C(a), then bt2 = a′[−−→σft1]. Otherwise, bt2 = bt1 . In either

case, the unmodified streams and register contexts are consistent with the strengthened

induction without an additional step of evaluation.

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur at the terminator of a clone of block a.

168

Simplified Switch In the asymmetric case, the (n+1)-th step of evaluation of f transfers

control away from block bt ∈ C(a) by application of rule E-Switch. By the conditions of

the transformation, control is transferred to block bt1 . Here, dom(param(bt1)) = ⟨ri⟩. For

brevity, we let Tt = switch v cvi 7→ refi (unit 7→ refb) cvj 7→ refj refd.

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt⟩ | γ1 | µ′ | ν ′ | Ψ′; Tt, ŝt1)

→ (⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ŝt1)

By our strengthened inductive hypothesis, the n′-th step of evaluation of fout stops in func-

tion ft2 = trans(ft1) on a terminator that transfers control away from trans(⟨ft1 , bt⟩), as

shown below, such that γ1 and γ2 are consistent with the strengthened induction. Then,

the (n′ + 1)-th step of evaluation of fout proceeds from application of rule E-Switch. As

rule E-Switch never matches on a unit value, the block reference refb is never selected

during evaluation of function f in the rule above. Additionally, as γ1(e) = γ2(e), the same

block reference is selected in evaluation of function fout.

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , trans(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; T [−−→σft2], trans(ŝt1))→

(⟨p[f/fout], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), trans(ŝt1))

First, suppose that bt1 ∈ C(a). In this case, bt1 = bt and bt2 = trans(⟨ft1 , bt⟩). Additionally,

stream(bt2) = stream(a)[−−→σft1], and stream(bt2) = stream(a′)[−−→σft2]. These streams differ only

by the terminator by construction and are consistent with the strengthened induction. In

all other cases, the blocks and streams are identical in both evaluations and both pairs

of components are consistent with the strengthened induction. In either case, as register

contexts γ1 and γ2 are consistent with the strengthened induction, they remain consistent

after the parallel addition of registers in the last step of evaluation.

169

Simplified Block Next, we cover the cases where the n-th step of evaluation of f is earlier

within block b (not yet at the terminator). This case is trivial by application of Lemma 6.C.1.

[Slot ← Refinement] We refine the translation of blocks by mapping clones of block a′

to clones of block a. We refine the translation of streams by replacing the terminator of

clones of block a′ with the original terminator of block a – this simply adds extra switch

cases which is unmatchable during any execution. For brevity, we decompose the stream st

into (s′t, ŝt).

trans(⟨ft, bt⟩) =


a[−→σft] bt ∈ C(a′)

bt otherwise

trans(⟨ft, bt, (st, ŝt)⟩) =


(s′t, term(a)[−→σft]), trans(ŝt) bt ∈ C(a)

st, trans(ŝt) otherwise

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot ← Invokability] If bt2 ∈ C(a′), then bt1 = a[−−→σft2]. Otherwise bt1 = bt2 . In either

case, the unmodified streams and register contexts are consistent with the strengthened

induction without an additional step of evaluation.

[Slot ← Asymmetric Evaluation] By the refined trans−1 relation, all temporarily di-

verging steps of evaluation occur at the terminator of a clone of block a′.

Simplified Switch In the asymmetric case, the (n′ + 1)-th step of evaluation of fout

transfers control away from block bt ∈ C(a′) by application of rule E-Switch. For brevity,

170

we let Tt have the following form

switch v cvi 7→ refi (unit 7→ refb) cvj 7→ refj refd

Here, dom(param(bt2)) = ⟨ri⟩.

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , bt⟩ | γ2 | µ′ | Ψ′; T [−−→σft2], ŝt2)→

(⟨p[f/fout], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2)

By our strengthened inductive hypothesis, the n′-th step of evaluation of fout stops in function

ft1 = trans−1(ft2) on a terminator that transfers control away from trans−1(⟨ft1 , bt⟩), as

shown below, such that γ1 and γ2 are consistent with the strengthened induction. Then,

the (n′ + 1)-th step of evaluation of fout proceeds from application of rule E-Switch. As

rule E-Switch never matches on a unit value, the block reference refb is never selected

during evaluation of function f in the rule above. Additionally, as γ1(e) = γ2(e), the same

block reference is selected in evaluation of function fout.

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft2 , bt⟩)⟩ | γ1 | µ′ | ν ′ | Ψ′; Tt, trans−1(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), trans−1(ŝt2))

First, suppose that bt2 ∈ C(a′). In this case, bt1 = bt and bt2 = trans−1(⟨ft2 , bt⟩). Additionally,

stream(bt2) = stream(a′)[−−→σft2], and stream(bt1) = stream(a)[−−→σft1]. These streams differ only

by the terminator by construction and are consistent with the strengthened induction. In

all other cases, the blocks and streams are identical in both evaluations and both pairs

of components are consistent with the strengthened induction. In either case, as register

contexts γ1 and γ2 are consistent with the strengthened induction, they remain consistent

after the parallel addition of registers in the last step of evaluation.

171

Simplified Block Next, we cover the cases where the n′-th step of evaluation of fout is

earlier within block a′ (not yet at the terminator). This case is trivial by application of

Lemma 6.C.1.

In the remainder of this section, we refer the delete edge transformation (notated below)

applied when paths only change in multiplicity. For specific details (including names of

intermediate components), refer to Figure 8.22 and Figure 8.23.

(f,Df , HFf
, LFf

, XFf
)

delete edge−−−−−−→
(a,b)

(fout, Dout, Hout, Lout, Xout)

Corollary 8.B.2. The set of paths over block labels from ℓ0 to ℓb′ in Gfout for some block

b′ ∈ B \ R that do not traverse the edge (lab(a), lab(b)) where lab(b′) = ℓb′ are equivalent to

the set of such paths in Gf .

Before we can state the maintenance properties of the delete edge procedure, we need to

define several lemmas to show that the approximate loop nesting forest constructed directly

before the eject procedure is in the form assumed by ejection. First, we show that the

approximate loop nesting forest contains the correct number of loops and each loop has the

correct header.

Lemma 8.B.3. If f is in canonical form, then the following three sets are equivalent:

dom(H ′) = {lab(l) | l ∈ F \HK} = {lab(l′) | l′ ∈ Ff ′}

Proof. As a backedge that does not exist in Gf cannot be introduced to Gf ′ by the deletion

of an edge, {lab(l′) | l′ ∈ Ff ′} ⊆ {lab(l) | l ∈ F}. Let l ∈ F be a loop of Gf and

let S ⊆ Gf⟨bodyf (l)⟩ describe the subgraph induced by the set of blocks reachable from

entry(f) after removing the edge (a, b). S is strongly connected if it contains the backedge

of l. This is the case when the latch of l is still reachable and (a, b) is not the backedge of l,

and is also precisely the condition that satisfies l ̸∈ HK .

172

Now we show that the approximate loop nesting forest forms a subset lattice (the nesting

structure of loops is somewhat correct – an inner loop with too many blocks in its body set

may be nested under a descendant of its true parent).

Lemma 8.B.4. The loop nesting forest reconstructed from (H ′, L′, X ′) forms a subset lat-

tice.

Proof. The set L′ is constructed from LF by removing blocks from loops such that blocks

are also removed from all descendant loops. As Ff is a subset lattice by definition, the loop

nesting forest reconstructed from (H ′, L′, X ′) must also form a subset lattice.

Now we show that every loop in the approximate loop nesting forest has a body set

containing a superset of the correct blocks. This is stated formally in Lemma 8.B.5. This

property ensures that blocks must only be ejected from the loop to correct the body set, and

no additional blocks must be brought in from the outside.

Lemma 8.B.5. If f is in canonical form, then bodyf ′(l′) ⊆ S for each l′ ∈ F ′ where S is the

set of blocks composing the body of the loop with header headerf ′(l′) reconstructed from H ′

and L′.

Proof. Let l ∈ F be the loop with header label ℓh. l ̸∈ HK by Lemma 8.B.3. Then, A(l) = l,

A(pF (l
′′)) ∈ F is a descendant of l in F if l′′ is a proper descendant of l in F , and the set of

blocks S is equivalent to the following.

S = {blockf (ℓb) | (ℓb, ℓl) ∈ L′ ∧ ℓl ∈ NH′(ℓh)}

= {blockf (ℓb) | (ℓb, ℓl) ∈ LF ∧ blockf (ℓb) ̸∈ R ∧ A(ℓl) ∈ NH′(lab(l))}

= {blockf (ℓb) | (ℓb, ℓl) ∈ LF ∧ blockf (ℓb) ̸∈ R ∧ A(ℓl) ∈ F ⟨l⟩ \HK}

= bodyf (l) \R

173

By Corollary 8.B.2, bodyf ′(l′) ⊆ bodyf (l) and bodyf ′(l′) ⊆ bodyf (l) \ R as f ′ contains no

blocks in R.

Now we show that the exits of each loop are correct with respect to the claimed body

set. Naturally, this implies the exit sets for loops with an accurate body set are correct.

Lemma 8.B.6. If f is in canonical form, then the exit set of a loop l′ is consistent with its

body set for every loop l′ in the loop nesting forest reconstructed from (H ′, L′, X ′).

Proof. Let lab(b′) = ℓb′ , and let Ll′ and Xl′ be the approximate body and exit sets of l′, re-

spectively. First, suppose predf ′(b′)∩Ll′ = ∅ but (ℓb′ , lab(header(l′))) ∈ X ′. By construction

of X ′, this pair must also exist in XF and therefore all edges from loop l′ to block b′ must

have become unreachable through the deletion an edge. However, as f is in canonical form,

b′ is a dedicated exit and must have become unreachable by the deletion of the edge. Then,

b′ ∈ R and this pair cannot exist in X ′ by construction. Now, suppose predf ′(b′) ∩ Ll′ ̸= ∅

but (ℓb′ , lab(header(l′))) ̸∈ X ′. The absence of this pair implies that b′ was not an exit of the

loop with the same header in function f and no such exit path can be constructed by the

deletion of an edge by Corollary 8.B.2.

Now we show that all inaccurate loops can be found on a single path in the claimed loop

nesting forest.

Lemma 8.B.7. If f is in canonical form, then all loops with an inaccurate body set exist

on the same ancestor path in the loop nesting forest reconstructed from (H ′, L′, X ′).

Proof. Suppose l and l′ are disjoint violating loops in the claimed loop nesting forest after

the deletion of the edge (a, b). Without loss of generality, let a ∈ body(l). Let b′ be a block

previously in the body of l′ that no longer belongs to l′ after the deletion of the edge. Then,

either b′ is no longer reachable from the header of l′ (within the body set of l′), or the latch of

174

l′ is no longer reachable from b′ (within the body set of l′). As the edge (a, b) does not occur

within l′, it must be the case that b′ has become unreachable. However, as l′ is a reducible

loop and is not an ancestor of l, all blocks of l′ must have become unreachable and l′ is not

part of the claimed loop nesting forest after deletion of the edge.

Finally, we can state the maintenance theorems for the delete edge procedure.

Theorem 8.B.8. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. Let b′ ∈ R be a block removed by the post-delete edge procedure. For no evaluation

of function f can evaluation enter block b′ as every path must necessarily take the block

reference removed by the delete case procedure, but the switch value for this reference is

unit and can thus never be selected. It follows that removal of the block set R from the

function f then does not influence evaluation and the remainder of the proof is then trivial

by application of Theorem 8.B.1 and Theorem 8.A.1.

Corollary 8.B.9. In the case where (a, b) ∈ 1E(f), the set of paths over block labels from

ℓ0 to ℓb′ in Gfout for some block b′ ∈ B where lab(b′) = ℓb′ is identical to the set of such paths

in Gf .

Theorem 8.B.10. If f is in canonical form, then fout is in canonical form.

Proof. If (a, b) ∈k E(f) where k > 1, then this theorem is trivial by Corollary 8.B.9. Other-

wise, this theorem is trivial by Theorem 8.A.2.

Theorem 8.B.11. If f is in LCSSA form, then fout is in LCSSA form.

175

Proof. First, we cover the case where (a, b) ∈k E(f) where k > 1. Let b ∈ B and b′ ∈ B′ be

blocks that share the same label. No registers are defined in f ′ that are not also defined in

f and the uses which occur in b′ are a subset of the uses which occur b. In the other case,

this theorem is trivial by Theorem 8.A.3.

Theorem 8.B.12. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. First, we cover the case where (a, b) ∈k E(f) where k > 1. In this case, block a′’s

terminator is well-typed by rule T-Switch as each block reference of a is well-typed and

inst(a′) = inst(a) (thus the same registers are defined at the time the terminator is typed).

The set implicit(a′) is constructed by removing references to registers defined only in refb.

Then, the implicits of block a′ are well-typed and nonlocalf ′(a′) ⊆ nonlocalf (a). Then,

according to Lemma 3.A.5, block a′ is well-typed by rule T-Block. In the other case, this

theorem is trivial by additional application of Theorem 8.A.4.

Theorem 8.B.13. The unique dominator tree of Gfout is Dout.

Proof. If (a, b) ∈k E(f) where k > 1, then this theorem is trivial by Corollary 8.B.9. Oth-

erwise, D′ is the unique dominator tree of f ′ by Ramalingam and Reps [53], and the rest

follows form Theorem 8.A.5.

Theorem 8.B.14. Fout reconstructed from (Hout, Lout, Xout) is the unique loop nesting forest

of Gfout .

Proof. If (a, b) ∈k E(f) where k > 1, then this theorem is trivial by Corollary 8.B.9. Oth-

erwise, the loop nesting forest reconstructed from (H ′, L′, X ′) validates the five assumptions

given in Section 8.1 by Lemma 8.B.3 through Lemma 8.B.7. Then, the proof is concluded

by application of Theorem 8.A.9.

176

9 Optimizations

In this chapter we outline proper control flow graph transformations that are the result of

classic compiler optimization techniques. These optimizations include straightening (remov-

ing unconditional branches), jump simplifications (reducing block branch factor or reducing

the number of branches on a particular path), function inlining, and loop optimizations

(unswitching, unrolling, and peeling).

9.1 Straightening

A program may contain a control flow edge between two blocks a and b such that the only

successor of a is b and the only predecessor of b is a. Such an edge may occur at synthesis,

but is more likely to occur due to a result of another transformation (e.g. canonicalization

as discussed in Chapter 7 or inlining a subset of a control flow graph at a program point as

discussed in Section 9.4). These edges can be collapsed through a process called straight-

ening so that a and b are combined into a single block. This reduces branching logic and

places unconditionally subsequent code physically near its caller, improving instruction cache

locality.

An example of this transformation is illustrated in Figure 9.11. Here, block p’s sole

I1, . . . , In
branch p(e1, e2)

In+1, . . . , Im
T

p() s(r1, r2) I1, . . . , In
r1 ← e1, r2 ← e2
In+1, . . . , Im, T

p()

Figure 9.11: Straightening the edge (p, s) combines the instructions from both blocks into
one. Block parameters of block s and the arguments from block p are replaced by move
instructions.

177

term(a) = branch ref

ref = ℓb(ei) lab(b) = ℓb predf (b) = {a} loopf (a) = loopf (b)

imp = implicit(a) ∪ (implicit(b)⊖ def(a)) s′ = ⟨ri ← move(ei) | (ri : ti) ∈ param(b)⟩

ℓa = lab(a) a′ = (ℓa, param(a), imp, inst(a) ∪ s′ ∪ stream(b)) f = (ℓ, t, B, ℓ0)

B′ = B \ {a, b} ∪ {a′} f ′ = (ℓ, t, B′, ℓ0) Dout = Df [a
′ 7→ a | pD(a′) = b][b 7→ ∅]

Hout = HFf
Lout = {(ℓ1, ℓ2) ∈ LFf

| ℓ1 ̸= lab(b)} Xout = XFf

(f,Df , HFf
, LFf

, XFf
)

straighten−−−−−→
a,b

(fout, Dout, Hout, Lout, Xout)

Figure 9.12: Collapsing the blocks of a non-critical edge.

successor is block s and block s’s sole predecessor is block p. The edge can be collapsed,

combining the instruction streams from both blocks into a single block (retaining the label

of block p).

This transformation is formally described by Figure 9.12. The preconditions for this

transformation require that a single edge exists between blocks a and b and that the edge

(a, b) does not cross a loop boundary. The first condition prevents a second target of a from

being spuriously removed and a second edge terminating at b from losing its target. The

second condition prevents de-canonicalization, as such edges are often a result of adding a

preheader or a dedicated exit. These edges are prime candidates for this transformation, but

must only be straightened once preservation of canonical form is no longer a concern (as a

last step during the optimization phase of compilation directly before synthesis to the target

platform).

The bulk of the transformation is simple. A new block a′ is created with the same label,

parameters, and initial instruction stream as a. Sharing the same block label ensures that

block references targeting a now transparently target a′ in the new function. We replace the

terminator of a with the instruction stream of b. Between these two streams, we simulate

178

r ← 2
. . .

. . .
switch r 1 7→ b() 2 7→ c() d()

.

a()(r : int)

b()() c()() d()()

r ← 2
· · ·

· · ·
switch unit unit 7→ b() unit 7→ d() c()

· · · · · · · · ·

a()(r : int)

b()() c()() d()()

r ← 2
· · ·

· · ·
branch c()

· · · · · ·

a()(r : int)

b()() c()()

Figure 9.21: Simplifying a switch condition in two stages.

the passing of control flow from a to b by explicitly moving the expressions in the terminator

of a the parameters of b. We also take care to add the implicit parameters of b (that are not

defined in a) to the new block.

The preconditions of this transformation ensure that idom(b) = a and we can maintain

dominators by simply collapsing this symmetric edge in the dominator tree. All children of

b are linked directly to a and b is unlinked from the tree. The loop bodies are maintained

by simply removing references to block b.

9.2 If Simplification

A program may contain a switch terminator containing references to multiple blocks (or

to the same block with differing arguments to block parameters) that is statically known

to select only one specific reference regardless of program input. This can happen due to

constant definitions and feature flags at the source level, or may come about due to other

transformations, such as inlining (discussed in Section 9.4) or loop unswitching (discussed

in Section 9.5). These terminators can be replaced with an unconditional branch containing

the same block reference. This transformation may in turn create additional optimization

opportunities. For example, the deletion of an edge may reduce the size or complexity of a

loop or function past the threshold that allows loop unrolling or function inlining.

179

term(b) = switch v cvi 7→ refi refd
v = cv over all execution traces (cv; cvi 7→ refi refd)→ ref

T = switch unit ⟨unit 7→ refi | refi ∈ term(b) ∧ refi ̸= ref⟩ ref

imp = {(r : t) ∈ implicit(b) | usea(r) ̸= {term(b)}}

b′ = ⟨lab(b), param(b), imp, inst(b) ∪ T ⟩

f = (ℓ, t, B, ℓ0) B′ = B \ {b} ∪ {b′} f ′ = (ℓ, t, B′, ℓ0)

ref = ℓt(ei) t = blockf (ℓt) targets = {blockf (ℓ)⟨k⟩ | ℓ ∈k target(b)} − {t}

(f ′, Df , HFf
, LFf

, XFf
)

delete edge−−−−−−−−−−→
{(b,t′)|t′∈targets}

∗
(fout, Dout, Hout, Lout, Xout)

(f,Df , HFf
, LFf

, XFf
)

if simplify−−−−−→
⟨f,b⟩

(fout, Dout, Hout, Lout, Xout)

Figure 9.22: Simplifying a switch terminator with only one possible target.

An example of this transformation is illustrated in Figure 9.21. This transformation

works in two parts. First, the terminator is altered so that the block reference that is known

to be used becomes the default and the remaining block references switch on the unit value.

Next, the delete edge operation is performed iteratively over the terminator until only the

live block reference remains.

This optimization is formally described by Figure 9.22. The only non-trivial precondi-

tion for this transformation is that the switch value v must always evaluate to cv over all

evaluations of f regardless of input and nondeterministic state. This allows us to statically

select the block reference taken during any execution from the terminator of b, called ref.

The terminator of block b can then be ‘rotated’ so that ref becomes the default case, and all

other references are selected with the value unit rather than their original constant value.

This puts the terminator in the correct form required by the delete edge operation, which

does the remainder of the heavy lifting. Additionally, as the switch value of the terminator

(which may have been a register) is replaced by the value unit, an implicit parameter must

180

p1 b p2

s1 s2

b′ p1 b p2

s1 s2

b′ p1 b p2

s1 s2

Figure 9.31: Simplifying a jump to an empty block in two parts. First, the empty block b is
duplicated. Then, the path (p1, b) is replaced with (p1, b

′) so that both edges terminating at
b and b′ are eligible for straightening.

be removed from the containing block if it is not otherwise referenced. All edges in the

multiset targets, composed of the outgoing edges of b except for the edge described by ref,

are removed in sequence.

9.3 Jump Simplification

In this section we detail a transformation that simplifies the jump of a critical edge (in

which case straightening cannot be applied). This transformation can be applied in two

circumstances. The first case is applied in relation to an instruction-less block with multiple

predecessors and multiple successors. Such a block can occur naturally from a source trans-

lation (the join point between consecutive if statements), but may also occur from previous

transformations (for example, a split block is no longer necessary if the loop boundary is

moved). The second case, referred to as jump threading, is applied when the final target

of a series of jumps is not known statically for all paths, but is known statically for a par-

ticular path. In either case, we can create an immediate opportunity for straightening by

duplicating a single block on the problematic path and routing control flow from a subset

of predecessors to the new block. This allows the original path and the new path to be

optimized independently.

An example of the transformation applied in the first case is illustrated in Figure 9.31.

In this example, all edges terminating at block b are critical and cannot be collapsed without

181

· · ·
switch r · · ·· · · · · ·

s1 s2

p1() p2()b(r)
cv c · · ·

switch r · · · · · · · · ·
switch r · · · · · ·

s1 s2

p1() p2()b(r)b′(r)
cv v

· · ·
branch · · · · · · · · ·

switch r · · · · · ·

s1 s2

p1() p2()b(r)b′(r)
cv c

Figure 9.32: Duplicating a single control flow path where switching values are known stati-
cally. This transformation creates additional optimization opportunities as analysis of block
b′ is influenced by only one control flow path.

destroying an unrelated edge. To simplify the jumps we add block b′, a clone of block b, to

the graph and replace references to block b in block p1 with a reference to block b′. The

only changes to both the dominator tree and the loop nesting forest are local, This creates

an immediate opportunity for the edge (p1, b
′) to be straightened so that the number of

branch instructions on paths p1 ; s1 and p1 ; s2 are reduced by one. This may also create

additional opportunities for straightening when b has a single remaining predecessor.

An example of this transformation applied in the second case is illustrated in Figure 9.32.

In this example, the target in block b is known statically to be s1 if the edge (p1, b) was

taken as register r holds the constant value cv. However, if the edge (p2, b) was taken the

target is not known. This prevents the terminator of b from being simplified in general

when considering all paths. To enable simplification, we add b′, a clone of block b, to the

graph and replace references to block b in block p1 with a reference to block b′. This makes

the block b′ unique to the path p1 ; s1 and the terminator of b′ can be replaced by an

unconditional branch. This allows the edge (p1, b
′) to be straightened, reducing the number

branch instructions on this path by one.

182

term(p) = branch ℓb(ei) |predf (b)| > 1 |succf (b)| > 1 b ̸= header(loop(b))

b ̸= latch(loop(b)) f = (ℓ, t, B, ℓ0) b′ = (ℓb′ , param, implicit(b), stream(b))

p′ = p[lab(b)/ℓb′] ℓb′ is fresh B′ = B \ {p} ∪ {p′, b′} f ′ = (ℓ, t, B′, ℓ0)

D′ = Df [b
′ 7→ p][b 7→ ncaDf

(b)] Dout = D′[c 7→ ncaD′(pred(c)) | c ∈ childDf
(b)]

Hout = HFf
Lout = LFf

[b′ 7→ loop(b)] Xout = XFf
∪ {(ℓb′ , ℓ) | (lab(b), ℓ) ∈ XFf

)}

f ′
rewrite uses−−−−−−−−−−−−−−−−−−−−−−−−−−→

{(ri : typeof(di))|di∈def(b) where di defines ri}

∗
(fout, Dout)

(f,Df , HFf
, LFf

, XFf
)

jump simplify−−−−−−−→
p,b

(fout, Dout, Hout, Lout, Xout)

Figure 9.33: Simplifying a sequence of jumps.

p b

p′

p b′

p′

b

Figure 9.34: Creation of an irreducible region when simplifying the jump to a loop header.

This transformation is formally described by Figure 9.33. The transformation is applied

to a block b and one of its predecessors p. After the transformation, the edge leaving p will

be eligible for straightening. This transformation is not applicable when b is the latch of

a loop, as this would introduce a latch and backedge pair. This transformation is also not

applicable when b is the header of a loop, as this may introduce an irreducible region as

illustrated in Figure 9.34. This transformation is also not applicable when b is the header or

a preheader, as they have a unique predecessor and successor, respectively.

The first case described above is applicable (for benefit) when inst(b) = ⟨⟩, and the second

183

b b b′

Figure 9.35: Domination change after jump simplification. An alternate path to the shaded
blocks (which were previously immediately dominated by b) has been introduced.

case is applicable when term(b) = switch r cvi 7→ refi refd and r = cv on path (p, b). The

transformation proceeds the same in both cases.

First, a fresh block b′ is created with a fresh label and its parameters and instruction

stream mapped with fresh registers (this same technique is applied to all blocks during loop

duplication as discussed in Section 8.3). Then, the edge (p, b) is replaced with the edge

(p, b′) in the resulting graph. If block b defines a register, either in a parameter or as the

target of an instruction, then downstream uses of that register must be rewritten to be the

reaching definition of the register defined in block b, or the symmetric register defined in

block b′. To rewrite these uses, we can use the SSA reconstruction algorithm described by

Braun et al. [12] in Section 7.1. The dominator tree is repaired by inserting the new block b′

as a child of its sole predecessor p, and recalculating the immediate dominator of the blocks

that used to be immediately dominated by b. An example set of affected blocks is shown in

Figure 9.35. Loop bodies are maintained by adding block b′ to the same loop as block b.

Loop exits are maintained by adding block b′ to all exit sets to which block b belongs. An

additional illustration of jump simplification near a loop boundary is given in Figure 9.36.

184

b

l

b

b′l

Figure 9.36: Addition of a loop exit after jump simplification.

9.4 Function Inlining

Function inlining replaces a function call site with the body of the called function. This

requires replacing the call instruction with an unconditional branch to the entry of the inlined

function and replacing all return instructions of the inlined function with unconditional

branches back to the instruction immediately following the call. Generally, function inlining

increases speed with a small increase in code size, but overly aggressive inlining may increase

the pressure of the instruction cache and reduce overall performance.

A major benefit of function inlining comes from the additional optimization opportunities

it provides. For example, suppose function f(a, b, cv) is called inside a loop such that a is

defined in the loop, b is loop-invariant, and cv is a constant value. Further suppose that

the value of a is used very broadly as a switch. For example, the result of the function

is determined largely by a ≤ 100. If interval analysis shows that this holds for all values

of a around the call-site, then the body of the inlined function can be simplified due to

more accurate value propagation, as the result of the function call is now known to be

loop-invariant, the remaining inlined body can be hoisted to the loop’s preheader.

This transformation is implemented in Waddle in two small steps. First, the block

containing the call instruction is ‘split’ into blocks b1 and b2 so that the call instruction is

at the end of one basic block and the subsequent instruction is at the beginning of another.

Then, a clone of the target function is inserted between split blocks – the call instruction in

b1 is replaced by a branch to the clone’s entry block, and each exit of the cloned function

185

branches back to block b2. Repairs to the dominator tree and loop nesting forest can be

performed, for the most part, in a local manner. Domination properties inside of the inlined

function do not change - the only changes occur at the boundaries of the inlined call. The

entry of the inlined function is dominated by the block containing the call site, block b1,

and the block containing the subsequent instruction, block b2, is dominated by the lowest

common ancestor of the inlined function’s exits. Generally, the structure of the loop nesting

forest also does not change – the entire loop nesting forest of the inlined function can be

embedded as a child of the loop containing the call instruction. An exception to this method

occurs only when the inlined function contains a loop with no exits, in which case no blocks of

that loop can reach a return statement, and therefore can reach neither b2 nor the latch of the

loop containing the call instruction. Fortunately, this can be easily repaired by re-purposing

the block ejection procedure discussed in Section 8.1.

An example of this transformation is illustrated in Figure 9.41. Block c, containing the

callsite, is split and the function body is made reachable by the process described above.

This transformation is formally described by Figure 9.42. First, an isomorphic clone,

denoted f ′, of the call target f̈ is created. Then, block b containing the call being inlined is

split into two blocks, b1 and b2. The former block contains the original parameters as well as

the instruction stream up to the call instruction. The latter block contains the instruction

stream following the call instruction. This block also has a single, newly constructed block

parameter, the register and type of which matches the target of the call instruction. The

blocks of the cloned function are mapped so that all return instruction instead branch to

block b2, passing the return value as a block argument. The dominator tree is constructed

by merging the dominator trees of both functions and linking entry(f ′) and b2 to their

immediate dominators. The modification of the loop nesting forest is similar: the loop

nesting structure is constructed by merging the two nesting sets together and making the

186

a

b

c

d

e

f

(a) Pre-inlining.

a

b

c1 f

g

h i

j

k

c2

d

e

(b) Post-inlining.

a

b

c1 f

g

h i

j

k

c2

d

e

(c) Post-ejection.

Figure 9.41: Function inlining in two parts. First, the source block is split around the callsite
and a duplicated function body is inserted between these block halves. Then, blocks that
cannot reach an exit of the inlined function are ejected from the loop containing the call
instruction.

roots of the cloned loop nesting forest a child of the loop containing the call instruction,

and the loop bodies are constructed by merging the two body relations and adding all

cloned blocks not contained in a loop of the inlined function to the loop containing the call

instruction. Lastly, the fake edge (b1, b2) is removed such that if the inlined function contains

no return instructions, block b2 and its dominating subtree will be found to be unreachable

and removed from the graph. This has the beautiful side-effect of also performing ejection

on the loop so that non-exiting loops will be moved out into the proper level of the loop

nesting forest.

187

f = (ℓ, t, B, ℓ0) l = loopf (b) stream(b) = ⟨I1, . . . , In, T ⟩

Ik = r ← call(rc, ei) deff (rc) = addr(f̈) f ′ ∈ C(f̈) f ′ = (ℓ′, t′, B′, ℓ′0)

b′ = entry(f ′) lab(b′) = ℓb′ imp1 = {(ri : ti) ∈ implicit(b) | ri ∈ use(b1)}

imp2 = {(ri : ti) ∈ implicit(b) | ri ∈ use(b2)} s1 = ⟨I1, . . . , Ik−1, branch ℓb′(ei)⟩

s2 = ⟨Ik+1, . . . , In, T ⟩ b1 = (ℓb, param(b), imp1, s1) b2 = (ℓb2 , ⟨r : t′⟩, imp2, s2)

ℓb2 is fresh B′′ = B \ {b} ∪ {b1, b2} ∪B′[return ei/branch ℓb2 (ei)] f ′′ = (ℓ, t, B′′, ℓ0)

D′ = (Df ∪Df ′)[b′ 7→ b1][b2 7→ ncaDf ′
(exit(f ′))][c 7→ b2 | c ∈ childDf

(b)]

H ′ = (HFf
∪HF ′

f
)[l′ 7→ l | l′ ∈ loop(f ′)]

L′ = (LFf
∪ LF ′

f
)[b′′ 7→ l | b′′ ∈ B′ ∧ loopf ′(b′′) = l∅]

X ′ = XFf
∪XF ′

f
(f ′′, D′, H ′, L′, X ′)

post delete edge−−−−−−−−−→
b1,b2

(fout, Dout, H,out Lout, Xout)

(f,Df , HFf
, LFf

, XFf
)

inline−−−−−−−−−−−→
⟨f,b,r←call(rc,ei)⟩

(fout, Dout, Hout, Lout, Xout)

Figure 9.42: Inserting the body of an external function at a callsite.

9.5 Loop Unswitching

A program may contain a conditional branch in a loop such that the branching value is

non-constant (so that it cannot be trivially optimized via if-simplification), but invariant

with respect to the containing loop. This creates a situation where once a loop is entered

during evaluation, every iteration of the loop will traverse the same edge of the terminator.

Further path optimizations can be enabled by unswitching the loop. First, the calculation

of the branching value is hoisted into the loop’s preheader if it is not already defined outside

of the loop. Next, the entire loop body is cloned once for each target of the conditional

branch. Then, the preheader terminator is modified so that it mirrors the semantics of the

conditional branch and references each cloned loop header. Now, the each cloned instance

of the original conditional branch can be independently simplified via if-simplification – the

comparison performed in the preheader statically ensures that each loop will unconditionally

188

<T> boolean contains(T[] arr, T v) {
for (T e : arr) {

if (v != null && v.equals(e)) {
return true;

}
}

return false;
}

<T> boolean contains(T[] arr, T v) {
if (v != null) {

for (T e : arr) {
if (v.equals(e)) {

return true;
}

}
} else {

for (T e : arr) {
/* empty body */

}
}

return false;
}

Figure 9.51: A Java source-level example of loop unswitching.

take the symmetric edge in the loop body.

Figure 9.51 gives a source-level illustration of this transformation. In this example, the

null-check of the variable v can be factored out so that one instance of the loop (where v

is non-null) can omit the null check on each iteration, and one instance of the loop (where

v is null) can be simplified to a no-op body (and, subsequently, removed as it is free of

side-effects1).

Figure 9.52 illustrates this transformation using an abstract control flow graph. In this

example, the register r is defined prior to the entry of the loop. This means that once control

flow reaches block h, the condition r = cv will remain unchanged until control flow reaches

block e. The loop body is cloned as discussed in Section 8.3. This cloned subgraph is made

reachable via the original preheader, whose terminator is modified from an unconditional

branch to the original header to a conditional branch to either the original header or its

clone. Notice that this undedicates the preheader and all exits of the loop that must be

subsequently re-dedicated. After this transformation, if control flow reaches block h, it must

be the case that r = cv, thus the edge to s1 is always taken (and the edge to s2 can be

deleted). Similarly, if control flow reaches block h′, it must be the case that r not = cv and
1Except for when the array is null, in which case a null-pointer exception is thrown at the time of

iteration. We ignore this to keep the example clear.

189

branch p()

h

switch r cv 7→ s1() s2()

s1 s2

l

e

h′

switch r cv 7→ s′1() s
′
2()

s′1s′2

l′

switch r cv 7→ h1() h2()

h

switch cv cv 7→ s1() s2()

s1 s2

l

e

h′

switch unit cv 7→ s′1() s
′
2()

s′1s′2

l′

Figure 9.52: Unswitching a loop by duplicating the body and hoisting the loop-invariant
condition to the preheader. Subsequently, the condition on each copy of the loop can be
simplified independently.

the edge to s′1 can be deleted.

This transformation is formally described by Figure 9.53. The precondition of the op-

eration requires that the terminator of block b in loop l is a switch that branches on a

non-constant value defined independently of the effects of evaluating loop l. In brief, the

terminator of the preheader is replaced by a branch to one of k + 1 copies of the preheader

(one of which being the original, and the other k being a root of a cloned subgraph). In order

to more immediately enable if-simplification, the terminator of block b is changed so that the

190

p = preheader(l) term(p) = branch ℓh(ei) term(b) = switch r cvi 7→ refi
k refd

r not defined in l r is not known to be constant

(f,Df , HFf
, LFf

, XFf
)

duplicate−−−−−→
l

(f ′1, D
′
1, H

′
1, L

′
1, X

′
1), (l

′
1, σL1)

duplicate−−−−−→
l

· · ·

· · · duplicate−−−−−→
l

∗
(f ′k, D

′
k, H

′
k, L

′
k, X

′
k), (l

′
k, σLk

) T ′ = switch r cvi 7→ σLi
(ℓh)(ei) ℓh(ei)

p′ = p[term(p)/T ′] b′ = b[term(b)/switch unit cvi 7→refi refd]

bj = blockf ′
k
(σLj

(lab(b))) b′j = bj[term(b)/switch cvj cvi 7→refi refd]

f ′k = (ℓ, t, B, ℓ0) B′ = B \ {p, b, bj} ∪ {p′, b′, b′j} f ′ = (ℓ, t, B′, ℓ0)

D′ = D′k[b
′ 7→ p′ | b′ ∈ idom(b′) ∈ bodyf (l) ∧ b′ ̸∈ bodyf (l)] H ′ = H ′k[l

′
k 7→ pFf

(l)]

(f ′, D′′, H ′, L′, X ′k)
dedicate preheader−−−−−−−−−−→
{l,l′1,...,l′k}

∗
· dedicate exit−−−−−−−−−−→
{l,l′1,...,l′k}×exit(l)

∗
(f ′′, Dout, Hout, Lout, Xout)

f ′′
rewrite uses−−−−−−→∪

def(l′i)

∗
(fout,_)

(f,Df , HFf
, LFf

, XFf
)

unswitch−−−−−→
l,⟨f,b⟩

(fout, Dout, Hout, Lout, Xout)

Figure 9.53: Duplicate a loop containing a loop-invariant branch so each loop can be opti-

mized independently.

switch value is unit (enforcing the default branch to be taken), and the terminator of each

copy bj of block b is changed so that the switch value is cvj (enforcing the j-th edge to be

taken). The dominator tree is constructed by taking the forest of partial dominator trees

produced by cloning the loop and linking the blocks exit(l) and the clones of blocks header(l)

to their immediate dominators. The loop nesting structure is constructed by attaching the

root of each cloned loop nesting forest in the tree as a sibling of l. The predecessor of l

(which now necessarily has multiple successors in each copy of the loop) and the exits of l

(which now necessarily have a predecessor in each copy of the loop) are now undedicated and

must be re-dedicated. In order to keep the graph in SSA form, each register defined by any

cloned loop is rewritten with a fresh register and its uses within the cloned loop are updated.

This is kept as two separate steps in theory to help aid the proof structures, but in practice

191

int i = 0;
for (; i < 100; i++) {

f(i);
}

int i = 0;
for (; i < 100; i++) {

f(i);
i++;
if (i >= 100) break;
f(i);

}

int i = 0;
for (; i < 100; i++) {

f(i);
i++;
f(i);

}

Figure 9.61: A Java source-level example of (manual) loop-unrolling.

loops are cloned in such a way that the duplicated version already has fresh registers for all

definitions (and saves a walk over the graph).

9.6 Loop Unrolling

In loop bodies with no or very predictable branching performance that operate on memory

in patterns causing infrequent cache misses, the loop condition and backedge may contribute

a significant portion of the loop’s total runtime. At the cost of code size, the loop body may

be cloned and performed twice per loop iteration so that the end-of-loop tests occur once

every two iterations. This transformation also stacks exponentially, such that applying this

transformation n times on a single loop will cause the body to be performed 2n times per

iteration and reduce the number of backedge traversals by a factor of 2n.

Figure 9.61 gives a source-level illustration of this transformation. In the first revision

of this code, the function f is called with arguments in the range [0, 100). Each iteration

increments the counting variable i and checks that it is within bounds before the subse-

quent iteration. In second revision of this code, the loop post-condition and condition are

copied explicitly into the body of the loop. In the third version of this code, the condition

check within the body is removed, as it is redundant. This reduces the number of branch

instructions required to perform this loop by half (and as the number of iterations are evenly

divisible by 4, they could be reduced by an additional factor of two by applying the same

procedure a second time).

192

p

h

b1 b2

l

e b′2

h′

b′1

l′

p

h

b1 b2

l e

b′2

h′

b′1

l′

p

h

b1 b2

l

e

b′2

h′

b′1

l′

Figure 9.62: Unrolling the loop by duplicating the body and placing it on the loop’s backedge.
This creates an immediate opportunity to straighten the edge (l, h′).

Figure 9.62 illustrates this transformation using an abstract control flow graph. In this

example, the loop body is cloned as discussed in Section 8.3. Then, the backedge (l′, h′) of the

cloned loop is replaced by an edge terminating in the original header, (l′, h). Note that this

destroys the outermost loop in the cloned subgraph. Symmetrically, the original backedge

(l, h) is replaced by an edge terminating in the cloned header, (l, h′). In this step, the cloned

subgraph is made reachable such that all cloned blocks are brought into the loop body. In

this example, the edge (l, h′) is immediately eligible for straightening. In loops where the

latch has more than one successor, additional processing may be required to remove such a

branch completely.

193

(f,Df , HFf
, LFf

, XFf
)

duplicate−−−−−→
l

(f ′, D′, H ′, L′, X ′), (l′, σL)

bh = header(l) b′h = header(l′) ℓbh = lab(bh) ℓb′h = lab(b′h) bl = latch(l)[ℓh/ℓ′h]

b′l = latch(l′)[ℓ′h/ℓh] f ′ = (ℓ, B, t, ℓ0) B′ = B \ {latch(l), latch(l′)} ∪ {bl, b′l}

f ′′ = (ℓ, B′, t, ℓ0) BD = {b′ | idom(b′) ∈ bodyf (ld) ∧ b′ ̸∈ bodyf (ld) ∧ ld ∈ Ff⟨l⟩}

D′′ = D′[b′h 7→ bl][b
′ 7→ ncaD′(pred(b′)) | b′ ∈ BD]

H ′′ = H ′[b′ 7→ bh | b′ 7→ b′h ∈ H ′][b′h 7→ ∅]

L′′ = L′[b 7→ bh | loopf ′(b) = l′] X ′′ = X ′ \ {(ℓ, ℓb′h) ∈ X}

(f ′′, D′′, H ′′, L′′, X ′′)
dedicate exit−−−−−−−−−−−−−−−−−−−→

{(ld,e)|ld∈Ff ⟨l⟩∧ld ̸=l∧e∈exit(ld)}

∗
(f ′′′, Dout, Hout, Lout, Xout)

f ′′′
rewrite uses−−−−−−→

def(l′)

∗
(fout,_)

(f,Df , HFf
, LFf

, XFf
)

unroll−−−→
l

(fout, Dout, Hout, Lout, Xout)

Figure 9.63: Modify a loop so the body is performed twice per backedge traversal.

This transformation is formally described by Figure 9.63. This transformation starts,

unsurprisingly, by duplicating the loop body. The resulting function is constructed by re-

placing the backedge reference in the original latch with a reference to the cloned header

block, and replacing the backedge reference in the cloned latch with a reference to the orig-

inal header block. The dominator tree is constructed by taking dominator forest produced

by cloning the loop, linking the new latch to the old header and the old latch to the new

header, and repairing the dominators that were broken by duplicating the predecessors of

exit nodes (notice that these are not necessarily the exits themselves). The loop nesting

forest produced from cloning the loop is repaired by adding the blocks belonging to loop l′

to the body of loop l, nesting the cloned inner (non-root) loops of the new subgraph under

loop l, and removing all references to the new loop l′ from the exit relation, as it is no

longer a loop distinct from l. In order to keep the graph in SSA form, each register defined

by the cloned loop is rewritten with a fresh register and its uses within the cloned loop are

194

boolean first = true;
for (int i = 0; i < 10; i++) {

if (first) {
x[i] = y[i] * 2;

} else {
x[i] = y[i] * 3;

}

first = false;
}

x[1] = y[1] * 2;

for (int i = 1; i < 10; i++) {
x[i] = y[i] * 3;

}

Figure 9.71: A Java source-level example of peeling the first iteration from a loop.

updated.

9.7 Loop Peeling

Loop peeling is a transformation that unrolls a constant number of loop iterations from the

beginning (or end) of the loop and performs them outside of the loop body. In this section

we present the form of loop peeling in which the first iteration is split from the loop. The

form of loop peeling in which the last iteration is split behaves similarly, but is complicated

in the case where a loop has multiple exits. This transformation can be beneficial in tandem

with loop unrolling when the trip count of the loop is not a multiple of the target unrolling

factor (in which case loop peeling can be applied until the trip count is a multiple of the

target unrolling factor).

Figure 9.71 gives a source-level illustration of this transformation. In this example, the

consequent of the if statement is taken only on the first iteration, after which the condition

is flipped and the alternative is taken for the remainder of the loop iterations. Peeling this

loop presents opportunities for both the peeled iteration and the remaining iterations to be

simplified – the boolean flag no longer needs to be checked on either path, and the need for

the variable is eliminated.

Figure 9.72 illustrates this transformation using an abstract control flow graph. In this

example, the loop body is cloned as discussed in Section 8.3. Then, the backedge (l, h) of the

195

p

h

b1 b2

l

e b′2

h′

b′1

l′

p

h′

b′1 b′2

l′ e

b′2

h′

b′1

l′

Figure 9.72: Peeling the loop by duplicating the body and placing it between the preheader
and the backedge.

original loop is replaced by an edge terminating at the cloned header, (l, h′). Note that this

destroys the original loop while making the blocks of the newly cloned subgraph reachable.

This transformation is formally described by Figure 9.73. Again, the transformation

starts by duplicating the loop body. The resulting function is constructed by replacing

the backedge reference in the original latch with a reference to the cloned header block.

Unlike in loop unrolling, we do not perform the symmetric operation in the cloned backedge.

The dominator tree is constructed by taking dominator forest produced by cloning the

loop, replacing the original backedge with an edge from the old latch to the new header,

and repairing the dominators that were broken by duplicating the predecessors of exit nodes

(notice that these are not necessarily the exits themselves). The loop nesting forest produced

from cloning the loop is repaired by attaching the root of the cloned nesting forest as well

as loops immediately nested in l as a sibling of l. As this operation destroys the original

loop, we then remove all references of l in the loop nesting relation, body sets, and exit

sets. All exits of loop l′ necessarily undedicated, as they each have a predecessor in both

the original body of l and the current body of l′, and are re-dedicated. In order to keep the

graph in SSA form, each register defined by the cloned loop is rewritten with a fresh register

and its uses within the cloned loop are updated.

196

(f,Df , HFf
, LFf

, XFf
)

duplicate−−−−−→
l

(f ′, D′, H ′, L′, X ′), (l′, σL) bh = header(l)

b′h = header(l′) ℓbh = lab(bh) ℓb′h = lab(b′h) bhp = header(pF (l))

bl = latch(l)[ℓbh/ℓb′
h
] f ′ = (ℓ, B, t, ℓ0) B′ = B \ {latch(l)} ∪ {bl}

f ′′ = (ℓ, B′, t, ℓ0) BD = {b′ | idom(b′) ∈ bodyf (ld) ∧ b′ ̸∈ bodyf (ld) ∧ ld ∈ Ff⟨l⟩}

D′′ = D′[b′h 7→ bl][b
′ 7→ ncaD′(pred(b′)) | b′ ∈ BD]

H ′′ = H ′[b′h 7→ bhp][header(c) 7→ bhp | c ∈ childF (l)][bh 7→ ∅]

L′′ = L′ \ {(ℓ, ℓbh) ∈ L′} X ′′ = X ′ \ {(ℓ, ℓbh) ∈ X ′}

(f ′′, D′′, H ′′, L′′, X ′′)
dedicate preheader−−−−−−−−−−→

l′
· dedicate exit−−−−−−−−−→
{(l′,e)|e∈exit(l′)}

∗
(f ′′′, Dout, Hout, Lout, Xout)

f ′′′
rewrite uses−−−−−−→

defs(l′)

∗
(fout,_)

(f,Df , HFf
, LFf

, XFf
)

peel−−→
l

(fout, Dout, Hout, Lout, Xout)

Figure 9.73: Peeling a single iteration from the loop to be performed prior to entering the

loop boundary.

197

Appendix

Here we provide the proofs of maintenance properties of optimization transformations pre-

sented in Chapter 9.

9.A Straightening

In this section, we refer the straighten transformation (notated below). For specific details

(including names of intermediate components), refer to Figure 9.11.

(f,Df , HFf
, LFf

, XFf
)

straighten−−−−−→
a,b

(fout, Dout, Hout, Lout, Xout)

Theorem 9.A.1. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. We prove by filling in the slots of Template 6.A.1.

[Slot → Refinement] We refine the trans relation by replacing clones of blocks a and b

with a clone of block a′ and appending the register-mapped stream of block b to the streams

of clones of a. For brevity, we decompose the stream st into (s′t, Tt).

198

trans(⟨ft, bt⟩) =


a′[−→σft] bt ∈ C(a) ∨ bt ∈ C(b)

bt otherwise

trans(⟨ft, bt, (st, Tt, ŝt)⟩) =


s′t ∪ (s′ ∪ stream(b))[−→σft], trans(ŝt) bt ∈ C(a)

st, trans(ŝt) otherwise

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot → Invokability] If bt1 ∈ C(a), then bt2 = a′[−−→σft1]. Otherwise, bt2 = bt1 . In either

case, the unmodified streams and register contexts are consistent with the strengthened

induction without an additional step of evaluation.

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur within blocks a and b.

Collapsed Edge First, we cover the case where the (n + 1)-th step of evaluation of f

transfers control from block bt to block bt1 ∈ C(b) by application of rule E-Switch. Here,

bt ∈ C(a) as predf (b) = {a} and dom(param((bt1)) = ⟨r1, . . . , rk⟩.

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt⟩ | γ1 | µ′ | ν ′ | Ψ′; branch ℓb(ei), ŝt1)

→ (⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ŝt1)

By our strengthened inductive hypothesis, the n′-th step of evaluation of fout stops in function

ft2 = trans(ft1) in block bt2 = trans(⟨ft1 , bt⟩), as shown below, such that γ1 and γ2 are

consistent with the strengthened induction. Here, bt2 ∈ C(a′) and s′t = s′. The next k steps

199

of evaluation of fout proceed from repeated application of rule E-Move. For brevity, we let

st2 = stream(b)[−−→σft1].

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | Ψ′; s′[−−→σft2] ∪ st2 , trans(ŝt1)→

(⟨p[f/fout], ft2 , bt2⟩ | γ2[rj 7→ γ2(ej)
(j<i)

] | µ′ | Ψ′; ⟨si, . . . ⟩[−−→σft2] ∪ st2 , trans(ŝt1))→∗

(⟨p[f/fout], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; st2 , trans(ŝt1))

Streams st1 and st2 are consistent with the strengthened induction, and as register contexts

γ1 and γ2 are consistent with the strengthened induction, they remain consistent after the

parallel addition of registers in the last step of evaluation.

Collapsed Block Next, we cover the cases where the n-th step of evaluation of f is

within a clone of block a or a clone of block b. First, we consider when the (n + 1)-th step

of evaluation of f evaluates an instruction. By our strengthened inductive hypothesis, the

n′-th step of evaluation of fout stops at a state with a symmetric function, block, stream,

and register context. Here, both streams have identical instruction parts (only differing

at the terminator of a clone of block a). By application of Lemma 6.B.1, the resulting

streams are the input streams with their head elements removed, in which case the tails of

both streams remain consistent with the strengthened induction by construction, or both

streams are ϵ, also consistent with the strengthened induction. Additionally, the resulting

register contexts are extended with the same register-value pair, which does not violate

the strengthened induction. Now, consider when the (n + 1)-th step of evaluation of f

evaluates the terminator of a clone of block b (the other terminator was covered above). By

construction, the terminators of each stream are identical. By application of Lemma 6.B.3,

the resulting blocks are identical, as are their unmodified streams. Additionally, the resulting

200

register contexts are extended with the same set of register-value pairs, which does not violate

the strengthened induction.

[Slot ← Refinement] We refine the translation of blocks by mapping clones of block a′

to clones of block a or block b, depending on how far along execution is within the block.

We refine the translation of streams by replacing the tail-end of the stream with the original

terminator of block a while evaluation remains in the first segment of a clone of block a′.

Notice that if execution is already within the second segment, the instruction stream is

already in the correct symmetric form. In the following, we use st to mean the instruction

stream (without a return context) in the same step of evaluation of function fout as when

the trans−1 relation is applied. For brevity, let Ss = |stream(b)|, Sp = |param(b)|, and

Sp+s = Sp + Ss. Also let S⟨...,i⟩ denote the first i elements of sequence S in the following.

trans−1(⟨ft, bt⟩) =



a[−→σft] bt ∈ C(a′) ∧ |st| > Ss

b[−→σft] bt ∈ C(a′) ∧ |st| ≤ Ss

bt otherwise

trans−1(⟨ft, bt, (st, ŝt)⟩) =


st⟨...,|st|−Sp+s)⟩ ∪ term(a)[−→σft], trans−1(ŝt) bt ∈ C(a′) ∧ |st| > Ss

st, trans−1(ŝt) otherwise

Now, we define the following relationship stating that registers occurring in γ2 but not γ1

must be a parameter to a clone of block b. This relation allows the evaluation of fout to

sequentially assign values to registers that are assigned all at once in the parallel evaluation.

γ1 ⊆ γ2 γ2 \ γ1 ⊆
∪

bi∈C(b)

dom(param(bi))

201

[Slot ← Invokability] If bt2 ∈ C(a′), then bt1 = a[−−→σft2]. Otherwise bt1 = bt2 . In either

case, the unmodified streams and register contexts are consistent with the strengthened

induction without an additional step of evaluation.

[Slot ← Asymmetric Evaluation] By the refined trans−1 relation, all temporarily di-

verging steps of evaluation occur within block a′.

First Segment Here, we cover the case where the n′-th and (n′+1)-th steps of evaluation

of fout are in a block in C(a′) such that |st| > Ss.

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | Ψ′; I, st2 , ŝt2

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans−1(ft2) in block trans−1(⟨ft2 , bt⟩) ∈ C(a), as shown below, such that γ1 and γ2 are

consistent with the strengthened induction. Here, the leading instructions of each stream

are identical (up to the terminator of the clone of block a). First, we consider the case where

the leading instruction is not a function call. By application of Lemma 6.B.1, the resulting

streams are either the input streams with their head elements removed or both ϵ. In the

former case, the tails of both streams still have an identical leading instruction (and this case

will apply again in the subsequent steps of evaluation), or the leading element of the stream

in the evaluation of f is a terminator and the leading elements of the stream in the evaluation

of fout is a sequence of move instructions simulating the collapsed edge (and the following

case will apply on the subsequent step of evaluation). In the latter case, the ϵ streams are

trivially consistent with the strengthened induction. Now, we consider the case where the

leading instruction is a function call. By application of Lemma 6.B.2, the resulting functions

are either identical, or are instances of functions f and fout. In the former case, the resulting

202

blocks are identical. In the latter case, the resulting blocks are either identical, or clones of

blocks a and a′. In all cases, the blocks and their unmodified streams are consistent with

the strengthened induction.

Collapsed Edge Here, we cover the case where the n′-th and (n′+1)-th steps of evaluation

of fout are in a block in C(a′) such that Sp+s ≥ |st| > Ss. In this case, evaluation of fout is

somewhere within the sequence of move instructions that simulates the collapsed edge. Let

st2 have the form ⟨s′i, s′i+1, . . . ⟩ ∪ stream(b)[−−→σft2] in the following.

(p[f/fout] | γ | µ | ν | Ψ; fout(vti))→n′

(⟨p[f/fout], ft2 , bt2⟩ | γ2 | µ′ | Ψ′; st2 , ŝt2 →

(⟨p[f/fout], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | Ψ′; ⟨s′i+1, . . . ⟩ ∪ stream(b)[−−→σft2], ŝt2)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans−1(ft2) in block trans−1(⟨ft2 , bt⟩) ∈ C(a), as shown below, such that γ1 and γ2 are

consistent with the strengthened induction.

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft2 , bt⟩)⟩ | γ1 | µ′ | ν ′ | Ψ′; trans−1(⟨ft2 , bt2 , st2⟩), trans−1(ŝt2))

Here, trans−1(⟨ft2 , bt2 , st2⟩) = term(a)[−−→σft2]. No additional steps of evaluation are necessary

as the blocks and their streams are consistent with the strengthened induction, and γ2

asymmetrically assigned new values (which does not violate the register context superset

relation). It is important to note, in order to bridge the gap between this case and the

next, that the set of registers assigned by this sequence of instructions are equivalent to the

parameters of the subsequent block in the evaluation of f .

Second Segment Here, we cover the case where the n′-th step of evaluation of fout is in

a block in C(a′) such that |st| ≤ |stream(b)|. The block of the parallel evaluation is in C(b)

203

and the streams of both evaluations are identical. This case can then proceed with the rest

of the symmetric evaluation cases.

Corollary 9.A.2. The set of paths over block labels from ℓ0 to ℓb′ in Gfout for some block

b′ ∈ B where lab(b′) = ℓb′ can be constructed by replacing the subpath ⟨ℓa, ℓb, lab(c)⟩ with

the edge (ℓa, lab(c)) for every block c ∈ succf (b) in the set of such paths in Gf .

Theorem 9.A.3. If f is in canonical form, then fout is in canonical form.

Proof. Let F ′ be the loop nesting forest reconstructed from (Hout, Lout, Xout) and let l ∈ F

and l′ ∈ F ′ be loops that share a header label. By construction of F ′, both loops have the

same header, latch, and exits. As the edge cannot cross a loop boundary, both loops also

have the same preheader. Then, any violation in l′ must also be present in l.

Theorem 9.A.4. If f is in LCSSA form, then fout is in LCSSA form.

Proof. Block a′ defines and uses the same set of registers as block a and block b. As neither

block a nor b contains any uses outside of an ancestor of loopf (a) or defines any registers

used outside of loopf (a), construction of a′ introduces no violations to function fout.

Theorem 9.A.5. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. By definition, nonlocalfout(a
′) is equivalent to

implicit(a) ∪ (implicit(b)⊖ def(a))
∪

s∈succfout (a
′)

nonlocalfout(s) ⊖ def(a′)

where the highlighted term is equivalent to nonlocalf (b). Thus, nonlocal(a) = nonlocal(a′).

Now, we show that the stream of a′ is well-typed. Let Γ0 = param(a), nonlocalf (a) and

Γ′0 = param(b), nonlocalf (b). By inversion of rule T-Block, (p f | Γ0) ⊢ stream(a) and

(p f | Γ′0) ⊢ stream(b). Let Γk be the register typing context used in rule T-Ref in the

former derivation. Here, nonlocalf (b) ⊆ Γk and Γk ⊢ ei : ti for every (ri : ti) ∈ param(b).

204

Now, we show that (p fout | Γ0) ⊢ stream(a′). The derivation begins in identical fashion

as the first k steps of stream(a) as both streams have identical leading k instructions. Next,

the derivation (p fout | Γk) ⊢ s′ ∪ stream(b) proceeds by with zero or more applications of

rule T-Move. Here, each instruction ri ← move(ei) adds the pair (ri, ti) to the register

typing context as each expression Γk ⊢ ei : ti as shown above. This yields the expanded reg-

ister typing context Γk, param(b). Lastly, the derivation (p fout | Γk, param(b)) ⊢ stream(b)

proceeds in identical fashion to the derivation of stream(b) above as nonlocal(b) ⊂ Γk, also

shown above.

Theorem 9.A.6. The unique dominator tree of Gfout is Dout.

Proof. Let b′ be a block such that pD(b′) = b. The rightmost common subpath in the set of

paths from the entry block to b′ in Gf is suffixed by ⟨a, b⟩. The rightmost common subpath

in such paths in Gfout is suffixed by ⟨a′⟩ by Corollary 9.A.2. Therefore, idomfout(B
′) = a′. It

also follows from Corollary 9.A.2 that no other immediate dominator is modified.

Theorem 9.A.7. If f is in caonical form, then Fout reconstructed from (Hout, Lout, Xout) is

the unique loop nesting forest of Gfout .

Proof. Let C ⊆ B be a strongly connected component of Gf . It follows from Corollary 9.A.2

that C is also a strongly connected component of Gfout when a ̸∈ C and C \ {a, b} ∪ {a′}

is a strongly connected component of Gfout otherwise. The block b can neither be a header

nor an exit of a loop as loopf (a) = loopf (b) and |predf (b)| = 1 (and a canonical form header

has exactly two predecessors). Then, Ffout can be constructed simply by removing references

to block b from the set of loop bodies. This exactly mirrors the construction of the triple

(Hout, Lout, Xout).

205

9.B If Simplification

In this section, we refer to the if simplify transformation (notated below). For specific details

(including names of intermediate components), refer to Figure 9.21.

(f,Df , HFf
, LFf

, XFf
)

if simplify−−−−−→
⟨f,b⟩

(fout, Dout, Hout, Lout, Xout)

Our first step to proving that the evaluation of functions f and fout are symmetric is to

show that evaluation of function f and the intermediate function f ′ (the state of the function

directly before the removal of the edges from b) are symmetric.

Lemma 9.B.1. Assume p | f is well-typed. If f can be evaluated n steps with some register

context, memory context, nondeterminism state, and effects list, then f ′ can be evaluated

for n′ steps with the same initial context and arguments and reach a state with the same

memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. We prove by filling in the slots of Template 6.A.1.

[Slot → Refinement] We refine the translation of blocks by mapping clones of block b

to clones of block b′. We refine the translation of streams by replacing the terminator of

clones of block b with a terminator that unconditionally switches to the chosen default block.

For brevity, we decompose the stream st into (s′t, ŝt).

trans(⟨ft, bt⟩) =


b′[−→σft] bt ∈ C(b)

bt otherwise

trans(⟨ft, bt, (st, ŝt)⟩) =


(s′t, T [

−→σft]), trans(ŝt) bt ∈ C(b)

st, trans(ŝt) otherwise

206

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot → Invokability] If bt1 ∈ C(b), then bt2 = b′[−−→σft1]. Otherwise, bt2 = bt1 . In either

case, the unmodified streams and register contexts are consistent with the strengthened

induction without an additional step of evaluation.

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur at the terminator of a clone of block b.

Simplified Switch In the asymmetric case, the (n+1)-th step of evaluation of f transfers

control away from block bt ∈ C(b) by application of rule E-Switch. By the conditions of

the transformation, control is transferred to block bt1 over all execution traces (including

this one). Here, dom(param(bt1)) = ⟨ri⟩ and ref = ℓb′(ei) is the block reference taken by this

step of evaluation.

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt⟩ | γ1 | µ′ | ν ′ | Ψ′; switch v cvi 7→ refi refd, ŝt1)

→ (⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ŝt1)

By our strengthened inductive hypothesis, the n′-th step of evaluation of f ′ stops in function

ft2 = trans(ft1) on a terminator that transfers control away from trans(⟨ft1 , bt⟩), as shown

below, such that γ1 and γ2 are consistent with the strengthened induction. Then, the (n′+1)-

th step of evaluation of f ′ proceeds from application of rule E-Switch by taking the default

switch case (equivalent to ref by construction). Here, bt2 = trans(⟨ft1 , bt1⟩) and, as no block

207

parameters are modified by the transformation, dom(param(bt2)) = ⟨ri⟩.

(p[f/f ′] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/f ′], ft2 , trans(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; T [−−→σft2], trans(ŝt1))→

(⟨p[f/f ′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), trans(ŝt1))

First, suppose that bt1 ∈ C(b). In this case, bt1 = bt and bt2 = trans(⟨ft1 , bt⟩). Additionally,

stream(bt2) = stream(b)[−−→σft1], and stream(bt2) = stream(b′)[−−→σft2]. These streams differ only

by the terminator by construction and are consistent with the strengthened induction. In

all other cases, the blocks and streams are identical in both evaluations and both pairs

of components are consistent with the strengthened induction. In either case, as register

contexts γ1 and γ2 are consistent with the strengthened induction, they remain consistent

after the parallel addition of registers in the last step of evaluation.

Simplified Block Next, we cover the cases where the n-th step of evaluation of f is earlier

within block b (not yet at the terminator). This case is trivial by application of Lemma 6.C.1.

[Slot ← Refinement] We refine the translation of blocks by mapping clones of block b′

to clones of block b. We refine the translation of streams by replacing the terminator of

clones of block b′ with the original terminator of block b – this simply adds extra switch

cases which are unmatchable during any execution. For brevity, we decompose the stream

st into (s′t, ŝt).

trans(⟨ft, bt⟩) =


b[−→σft] bt ∈ C(b′)

bt otherwise

trans(⟨ft, bt, (st, ŝt)⟩) =


(s′t, term(b)[−→σft]), trans(ŝt) bt ∈ C(b′)

st, trans(ŝt) otherwise

208

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot ← Invokability] If bt2 ∈ C(b′), then bt1 = b[−−→σft2]. Otherwise bt1 = bt2 . In either

case, the unmodified streams and register contexts are consistent with the strengthened

induction without an additional step of evaluation.

[Slot ← Asymmetric Evaluation] By the refined trans−1 relation, all temporarily di-

verging steps of evaluation occur at the terminator of a clone of block b′.

Simplified Switch In the asymmetric case, the (n′ + 1)-th step of evaluation of f ′ trans-

fers control away from block bt ∈ C(b′) by application of rule E-Switch. The termina-

tor T switches on the unit value, thus the default switch case is always taken. Here,

dom(param(bt2)) = ⟨ri⟩ and ref = ℓb′(ei) is the block reference taken by this step of evalua-

tion.

(p[f/f ′] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/f ′], ft2 , bt⟩ | γ2 | µ′ | Ψ′; T [−−→σft2], ŝt2)→

(⟨p[f/f ′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans−1(ft2) on a terminator that transfers control away from trans−1(⟨ft2 , bt⟩), as

shown below, such that γ1 and γ2 are consistent with the strengthened induction. Then, the

(n+1)-th step of evaluation of f proceeds from application of rule E-Switch by taking the

block reference equivalent to ref. Here, bt1 = trans(⟨ft2 , bt2⟩) and, as no block parameters

209

are modified by the transformation, dom(param(bt2)) = ⟨ri⟩.

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft2 , bt⟩)⟩ | γ1 | µ′ | ν ′ | Ψ′; switch v cvi 7→ refi refd, trans−1(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), trans−1(ŝt2))

First, suppose that bt2 ∈ C(b′). In this case, bt2 = bt and bt1 = trans−1(⟨ft2 , bt⟩). Additionally,

stream(bt2) = stream(b′)[−−→σft1], and stream(bt1) = stream(b)[−−→σft1]. These streams differ only

by the terminator by construction and are consistent with the strengthened induction. In

all other cases, the blocks and streams are identical in both evaluations and both pairs

of components are consistent with the strengthened induction. In either case, as register

contexts γ1 and γ2 are consistent with the strengthened induction, they remain consistent

after the parallel addition of registers in the last step of evaluation.

Simplified Block Next, we cover the cases where the n′-th step of evaluation of f ′ is

within block b′. This case is trivial by application of Lemma 6.C.1.

Theorem 9.B.2. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. By application of Lemma 9.B.1 and Theorem 8.B.8.

Corollary 9.B.3. The set of paths over block labels from ℓ0 to ℓb′ in Gf ′ for some block

b′ ∈ B where lab(b′) = ℓb′ is identical to the set of such paths in Gf .

Theorem 9.B.4. If f is in canonical form, then fout is in canonical form.

Proof. By Corollary 9.B.3, f ′ is also in canonical form. The rest then follows by application

of Theorem 8.B.10.

210

Theorem 9.B.5. If f is in LCSSA form, then fout is in LCSSA form.

Proof. If f is in LCSSA form, then the intermediate function f ′ is also in LCSSA form as

f ′ is constructed by removing a single use from f . The rest then follows by application of

Theorem 8.B.11.

Theorem 9.B.6. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. Let Γ0 = param(b), nonlocal(b). As p | f is well-typed, (p f | Γ0) ⊢ stream(b) by in-

version of rule T-Block. Let Γk be the register typing environment used in rule T-Switch.

By construction of block b′, its parameters, nonlocal parameters, and instruction stream (up

to the terminator) are identical to that of block b. Derivation of (p f ′ | Γ0) ⊢ stream(b′)

begins in identical fashion as the first k steps of stream(b) as both streams have identical

leading k instructions. Now, (p f ′ | Γk) ⊢ T by application of rule T-Switch as each refer-

ence was shown to be well-typed with respect to the same register typing environment above.

Then, p[f/f ′] | f ′ is well-typed as each block is well-typed and, as no implicit parameters were

added to any block, nonlocalfout(entry(fout)) = ∅. The rest then follows by application of

Theorem 8.B.12.

Theorem 9.B.7. The unique dominator tree of Gfout is Dout.

Proof. By Corollary 9.B.3, Df is the unique dominator tree of Gf ′ . The rest then follows by

application of Theorem 8.B.13.

Theorem 9.B.8. If f is in canonical form, then Fout reconstructed from (Hout, Lout, Xout)

is the unique loop nesting forest of Gfout .

Proof. By Corollary 9.B.3, Ff is the unique loop nesting forest of Gf ′ . The rest then follows

by application of Theorem 8.B.14.

211

9.C Jump Simplification

In this section, we refer to the jump simplify transformation (notated below). For specific

details (including names of intermediate components), refer to Figure 9.31.

(f,Df , HFf
, LFf

, XFf
)

jump simplify−−−−−−−→
p,b

(fout, Dout, Hout, Lout, Xout)

Our first step to proving that the evaluation of functions f and fout are symmetric is to

show that evaluation of function f and the intermediate function f ′ (the state the function

directly before SSA reconstruction) are symmetric.

Lemma 9.C.1. Assume p | f is well-typed. If f can be evaluated n steps with some register

context, memory context, nondeterminism state, and effects list, then f ′ can be evaluated

for n′ steps with the same initial context and arguments and reach a state with the same

memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. We prove by filling in the slots of Template 6.A.1.

[Slot → Refinement] We define the predicate fromp, as follows, that determines whether

or not the current state of evaluation has entered a clone of block b via a clone of block p. This

predicate will be necessary to distinguish whether or not symmetric evaluation of function

f ′ has entered a clone block b or a clone of block b′. This predicate is true whenever the

evaluation path ρ contains an element referencing the terminator of a clone of p (at which

point a clone of block b has been entered) and is not followed by the terminator of a clone

of block b (at which point a clone of block b has been exited).

fromp(ρ) =



true ρ = ⟨. . . , (⟨f ′′, p′′, term(p′′)⟩, b′′), (ci, bi)⟩

where p′′ ∈ C(p) ∧ ∀i · ci ̸= term(b[−→σf ′′])

false otherwise

212

We refine the translation of blocks by mapping clones of block b to clones of block b or

block b′, as described above. We refine the translation of streams by rewriting the terminator

of p. As b and b′ have identical streams in function f ′, no stream translation is necessary

when bt ∈ C(b). For brevity, we decompose the stream st into (s′t, Tt).

transρ(⟨ft, bt⟩) =



p′[−→σft] bt ∈ C(p)

b′[−→σft] bt ∈ C(b) ∧ fromp(ρ)

bt otherwise

transρ(⟨ft, bt, (st, ŝt)⟩) =


(s′t, T [

−→σft]), transρ(ŝt) bt ∈ C(p)

st, transρ(ŝt) otherwise

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot → Invokability] Application of this transformation requires that b has multiple

forward-predecessors, thus bt1 = b. If bt1 = p, then bt2 = p′[−−→σft1]. Otherwise, bt2 = bt1 . In

either case, the unmodified streams and register contexts are consistent with the strengthened

induction without an additional step of evaluation.

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur at the terminator of a clone of p, or within a clone of block b′

when entered from a clone of block p.

213

Altered Jump First, we cover the case where the (n + 1)-th step of evaluation of f

transfers control from block bt ∈ C(p) to block bt1 ∈ C(b) by application of rule E-Switch.

(p | γ | µ | ν | Ψ; f(vti))→n
ρ1

(⟨p, ft1 , bt⟩ | γ1 | µ′ | ν ′ | Ψ′; branch ℓb(ei), ŝt1)

→ρ2 (⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ŝt1)

By our strengthened inductive hypothesis, the n′-th step of evaluation of f ′ stops in function

ft2 = trans(ft1) on a terminator that transfers control from block trans(⟨ft1 , bt⟩), as shown

below, such that γ1 and γ2 are consistent with the strengthened induction. Then, the (n′+1)-

th step of evaluation of f ′ proceeds by application of rule E-Switch. Here, bt2 ∈ C(b′). It

is worth nothing that the terminating element of ρ2 is the terminator of bt (and as there is

yet no subsequent terminator of bt1), fromp(ρ2) is true in the subsequent step of evaluation.

(p[f/fout] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/fout], ft2 , trans(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; branch ℓb′(ei), trans(ŝt1))→

(⟨p[f/fout], ft2 , bt2⟩ | γ2[r′i 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), trans(ŝt1))

Fresh Block Next, we cover the cases where the n-th step of evaluation of f is within

block b and the predicate fromp(ρ) is true, where ρ is the evaluation path at the n-th step

of evaluation of f . If evaluation of f ′ is not yet at a terminator, then this case is trivial

by application of Lemma 6.C.1. Now, consider when the (n + 1)-th step of evaluation of

f evaluates the terminator of a clone of block b. By construction, the terminators of each

stream are identical. By application of Lemma 6.B.3, the resulting blocks are identical –

it cannot be the case that evaluation of f ′ transfers control to block p′ and evaluation of

f transfers control to block p, as block b can neither be a header nor a latch of a loop.

Then, the unmodified streams of blocks p and p′ in the same function are consistent with the

214

strengthened induction by construction. The resulting register contexts are extended with

the same register-value pair from both lemmas, which does not violate the strengthened

induction.

[Slot ← Refinement] We refine the translation of blocks by mapping clones of blocks p′

and b′ to clones of block p and b, respectively. For brevity, we decompose the stream st into

(s′t, Tt).

trans(⟨ft, bt⟩) =



p[−→σft] bt ∈ C(p′)

b[−→σft] bt ∈ C(b′)

bt otherwise

trans(⟨ft, bt, (st, ŝt)⟩) =


(s′t, term(p)[−→σft]), trans(ŝt) bt ∈ C(p)

st, trans(ŝt) otherwise

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot ← Invokability] If bt2 = p′, then bt1 = p[−−→σft1]. Otherwise, bt1 = bt2 . In either case,

the unmodified streams and register contexts are consistent with the strengthened induction

without an additional step of evaluation.

[Slot ← Asymmetric Evaluation] By the refined trans−1 relation, all temporarily di-

verging steps of evaluation occur at the terminator of a clone of p′, or within a clone of block

b′.

215

Altered Jump First, we cover the case where the (n′ + 1)-th step of evaluation of f ′

transfers control from block bt ∈ C(p′) to block bt2 ∈ C(b′) by application of rule E-Switch.

(p[f/f ′] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/f ′], ft2 , bt⟩ | γ2 | µ′ | Ψ′; branch ℓb′(ei), ŝt1)→

(⟨p[f/f ′], ft2 , bt2⟩ | γ2[r′i 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans−1(ft2) on a terminator that transfers control from block trans−1(⟨ft1 , bt⟩), as

shown below, such that γ1 and γ2 are consistent with the strengthened induction. Then, the

(n+1)-th step of evaluation of f proceeds by application of rule E-Switch. Here, bt1 ∈ C(b).

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft2 , bt⟩)⟩ | γ1 | µ′ | ν ′ | Ψ′; branch ℓb(ei), trans(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), trans(ŝt2))

Fresh Block Next, we cover the cases where the n′-th step of evaluation of f ′ is within

block b′. If evaluation of f ′ is not yet at a terminator, then this case is trivial by application

of Lemma 6.C.1. Now, consider when the (n′ + 1)-th step of evaluation of f ′ evaluates

the terminator of a clone of block b′. By construction, the terminators of each stream are

identical. By application of Lemma 6.B.3, the resulting blocks are again identical. Then,

the unmodified streams of both blocks are identical and the resulting register contexts are

extended with the same register-value pair from both lemmas, which does not violate the

strengthened induction.

Theorem 9.C.2. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

216

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. By application of Lemma 9.C.1 and Theorem 7.A.1.

Corollary 9.C.3. The set of paths over block labels from ℓ0 to ℓb′ in Gfout for some block

b′ ∈ B where lab(b′) = ℓb′ is the set of such paths in Gf unioned with the set of such paths

in GF with (all combinations of) ℓb replaced with ℓb′ .

Theorem 9.C.4. If f is in canonical form, then fout is in canonical form.

Proof. Block b cannot be a preheader of a loop as it must shave multiple successors and

cannot be a header of a loop by assumption. Then, by Corollary 9.C.3 and Theorem 9.C.9,

the only changes to loop structures occurs when b′ is added to an exit set of some loop l.

However, as block b was dedicated to loop l, then block b′ just also be dedicated to loop l as

block p′, its sole predecessor, is a member of l.

Theorem 9.C.5. If f is in LCSSA form, then fout is in LCSSA form.

Proof. The only uses introduced into the intermediate function f ′ are those in block b′.

However, these uses are identical to the uses of block b and both blocks are placed in the

same loop by Theorem 9.C.9. Then, the rest follows by application of Theorem 7.A.7.

Lemma 9.C.6. If p | f is well-typed and f is in SSA form, then p | f ′ is well-typed.

Proof. As blocks b and b′ have the same set of successors, have the same set of implicit

parameters, and define the same registers, they must also have the same set of nonlocal

parameters. Then, blocks b and b′ have identical typing derivations. References to block

b′ in block p′ are well-typed by application of rule T-Ref as a similar block reference was

well-typed in block p and blocks b and b′ have identical block parameters and nonlocal block

parameters. It then follows that blocks p also have p′ identical nonlocal block parameters.

217

Theorem 9.C.7. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. By application of Lemma 9.C.6 and Theorem 7.A.2.

Theorem 9.C.8. The unique dominator tree of Gfout is Dout.

Proof. By Corollary 9.C.3, the blocks that change dominators are block b′ (not present in

function f), block b (as it is not directly reachable via block p′), and the set of blocks that

were previously immediately dominated by block b (as there is now a path reaching it that

now travels through block b′). As predfout(b
′) = {p′}, p′ immediately dominates block b.

It follows that the remaining predecessors of block b have the correct dominator and the

immediate dominator of b can be calculated from the nearest common ancestor in the old

dominator tree as shown by Alstrup [8]. The same logic can then be repeated to calculate

the immediate dominators for the blocks in set childDf
(b).

Theorem 9.C.9. If f is in canonical form, then Fout reconstructed from (Hout, Lout, Xout)

is the unique loop nesting forest of Gfout .

Proof. By Corollary 9.C.3, block b′ can reach the same blocks as block b and can be reached

by the same blocks that can reach block b. Then, blocks b and b′ belong in the same strongly

connected component and must belong in the same loop. If b is an exit of some loop l, then

b′ must also be an exit of that loop as the latch of l cannot be reached from block b′ while

staying in the body set of l as block b cannot either.

9.D Function Inlining

In this section, we refer to the inline transformation (notated below). For specific details

(including names of intermediate components), refer to Figure 9.41.

(f,Df , HFf
, LFf

, XFf
)

inline−−−−−−−−−−−→
⟨f,b,r←call(rc,ei)⟩

(fout, Dout, Hout, Lout, Xout)

218

Lemma 9.D.1. Assume p | f is well-typed. If f can be evaluated n steps with some register

context, memory context, nondeterminism state, and effects list, then f ′′ can be evaluated

for n′ steps with the same initial context and arguments and reach a state with the same

memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. We prove by filling in the slots of Template 6.A.1.

[Slot → Refinement] We define the predicate inlined, as follows, that determines if the

current state of evaluation is within a clone of the function later inlined by this transforma-

tion. This predicate is true when the element of the evaluation path ρ that transfers control

into function ft, a clone of the target function, comes from the inlined callsite. Because each

invocation of a function creates a fresh clone, there is at most one such element.

inlined(ft, ρ) =


true (⟨b′, Ik[−→σf ′

t
]⟩, entry(ft)) ∈ ρ ∧ b′ ∈ C(b)

false otherwise

We also define the predicate beforecall, as follows, that determines whether or not evaluation

has progressed past the inlined call instruction of a given block bt.

beforecall(ft, bt, ρ) = (⟨ft, bt, Ik[−→σft]⟩,_) ∈ ρ ∧ bt ∈ C(b)

We refine the translation of functions by mapping clones of function f and clones of the

inlined function to the symmetric clone of function f . All other functions are identical, as it

is in the unrefined case.

transρ(ft) =


f ′′[−→σft] ft ∈ C(f) ∨ inlined(ft, ρ)

ft otherwise

We refine the translation of blocks by mapping clones of block b to either a clone of block

b1 or a clone of block b2, depending on how far into the block evaluation has moved. The

219

terminators of the exit blocks of clones of function f̈ are replaced to branch to block the

function’s clone of b2, but only when evaluation is currently within the inlined call.

transρ(⟨ft, bt⟩) =



b1[
−→σft] beforecall(ft, bt, ρ)

b2[
−→σft] ¬beforecall(ft, bt, ρ)

bt[return ei/branch ℓb′ (ei)] bt ∈ C(exit(f̈)) ∧ inlined(ft, ρ)

bt otherwise

We refine the translation of streams by mapping streams originating from block b to a portion

of the stream translated from either s1 or s2, depending on how far into the block evaluation

has moved. We replace the terminator of clones of the exit blocks of function f̈ with branches

back to block b2, but only when evaluation is currently within the inlined call. For brevity,

we decompose the stream st into (s′t, Tt) in the following.

transρ(⟨ft, bt, (st, ŝt)⟩) =



⟨s1i , . . . ⟩[−→σft], transρ(ŝt) bt ∈ C(b) ∧ s′ = ⟨Ii, . . . , T ⟩ ∧ i ≤ k

⟨s2i−k
, . . . ⟩[−→σft], transρ(ŝt) bt ∈ C(b) ∧ s′ = ⟨Ii, . . . , T ⟩ ∧ i ̸≤ k

(s′t, branch ℓb′(e)), transρ(ŝt) inlined(ft, ρ) ∧ Tt = return e

st, transρ(ŝt) otherwise

We refine the translation of return contexts. Whenever the return context’s evalua-

tion path ends with an element referencing the inlined instruction, denoted by (b′, I ′k) such

that b′ ∈ C(b) and I ′k is the inlined call instruction under register substitution, we simply

translate the inner return context and ignore the function, block, register, and remaining

instruction stream. In effect, this removes the inlined call from the evaluation history but

220

leaves everything else alone. Again, for brevity, we decompose the stream s into (s′, ŝt).

transρ(⟨ft, bt, rt, s⟩ρ′) =


transρ′(ŝt) (c,_) ∈ ρ′

⟨transρ′(ft), transρ′(bt), rt, transρ′(⟨ft, bt, s⟩)⟩ otherwise

where c = ⟨ft, bt, Ik[−→σft]⟩ ∧ bt ∈ C(b)

We add the following additional relationship between register contexts. Unfortunately,

showing register symmetry is not as straightforward as the other transformations in this

work as the registers of the inlined function and the source function are not equivalent.

Let σf̈ be the substitution set that relates the registers of function f̈ to its clone f ′ during

the transformation (this substitution is unique). We define the following substitution that

translates a register from an instance of the non-inlined function into the symmetric register

in the inlined function. This is done by first translating the register defined during evaluation

of function f into the symmetric register defined in the prototype of f̈ , mapping this register

into the symmetric register defined in the prototype of f ′, and finally mapping this prototype

register into the symmetric register defined during evaluation of function f ′′. We use the

notation ⟨. . . , ρi⟩ to mean the first i elements of ρ so that we can take the proper evaluation

path prefix to find the correct function in the parallel evaluation of f ′′.

σ =
∪

(⟨fti ,c⟩,_)∈ρ

[−→σfti
−1 · σf̈ ·

−−−−−−−−−→σtrans⟨...,ρi⟩(fti) : fti ∈ C(f̈) ∧ inlined(⟨. . . , ρi⟩)]

Now, we define the following relationship stating that registers occurring in γ1 but not γ2

must be mappable to a register defined in an instance of the inlined function.

(γ1 ∩ γ2) ∪ (γ1 \ γ2)[σ] = γ2

[Slot → Invokability] If bt1 ∈ C(b), then bt2 = b1[
−−→σft1]. Otherwise, bt2 = bt1 . In either

case, the unmodified streams and register contexts are consistent with the strengthened

induction without an additional step of evaluation.

221

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur in block b or within the function call which is inlined by the

transformation.

Inlined Call First, we cover the case where the (n+ 1)-th step of evaluation of f invokes

the function to be inlined by application of rule E-Call. Here, ft1 ∈ C(f ′), bt1 = entry(ft1),

and dom(param(bt1)) = ⟨ri⟩.

(p | γ | µ | ν | Ψ; f(vti))→n
ρ1

(⟨p, ft, bt⟩ | γ1 | µ′ | ν ′ | Ψ′; r′ ← call(rc, ei), st, ŝt)→ρ2

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ⟨ft, bt, r′, (st, ŝt)⟩)

By our strengthened inductive hypothesis, the n′-th step of evaluation of f ′′ stops in function

ft2 = trans(ft1) ∈ C(f ′′) on a terminator that transfers control from block trans(⟨ft1 , bt⟩) to

block bt2 by application of rule E-Switch. The predicate inlined(ρ2) is true as the (n+1)-th

step of evaluation of f inserted an element including the inlined call instruction onto the

evaluation path. Here, ft2 = transρ1(ft1) = f ′′[−−→σft1], bt2 = transρ2(⟨ft1 , bt1⟩) = bt1 [
−−→σft1], and

dom(param(bt2)) = ⟨r′i⟩.

(p[f/f ′′] | γ | µ | ν | Ψ; f ′′(vti))→n′

(⟨p[f/f ′′], ft2 , transρ1(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; branch ℓb(ei), transρ1(ŝt))→

(⟨p[f/f ′′], ft2 , bt2⟩ | γ2[r′i 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), transρ1(ŝt))

The return context ⟨ft, bt, r, (st, ŝt)⟩ is constructed with the evaluation path ρ2. This evalua-

tion path ends with the call instruction taken in the (n+1)-th step of evaluation of f . Thus,

the translation of this return context yields trans(ŝt) and the resulting return contexts, as

well as the instruction streams of blocks bt1 and bt2 , are consistent with the strengthened

222

induction. Additionally, the following relationships hold with respect to the register substi-

tutions uniquely defining the register spaces of functions ft1 and ft2 .

−−→σft1 ⊆ {pi 7→ ri | pi ∈ dom(param(bt1))} −−→σft2 ⊆ {pi 7→ r′i | pi ∈ dom(param(bt2))}

Then, for each register ∀ri ∈ {ri} · σ(ri) = r′i and the register contexts γ1[ri 7→ γ1(ei)] and

γ2[r′i 7→ γ2(ei)] are also consistent with the strengthened induction.

Inlined Return Next, we cover the case where the (n+1)-th step of evaluation of f returns

from function ft ∈ C(f̈) by rule E-Return. For this case we assume that the call originated

from the callsite to be inlined. Here, ft1 ∈ C(f), bt1 = entry(ft1), and dom(param(bt1)) = ⟨ri⟩.

(p | γ | µ | ν | Ψ; f(vti))→n
ρ1

(⟨p, ft, bt⟩ | γ1 | µ′ | ν ′ | Ψ′; return e, ⟨ft1 , bt1 , r′, (st1 , ŝt)⟩ρ2)

→ (⟨p, ft1 , bt1⟩ | γ1[r′ ← γ1(e)] | µ′ | ν ′ | Ψ′; st1 , ŝt)

By our strengthened inductive hypothesis, the n′-th step of evaluation of f ′′ stops in func-

tion ft2 = trans(ft1) on a terminator that branches to block bt2 ∈ C(b2) by application of

rule E-Switch. Here, ft2 ∈ C(f ′′), bt2 ∈ C(b2) and dom(param(bt2)) = ⟨r′⟩.

(p[f/f ′′] | γ | µ | ν | Ψ; f ′′(vti))→n′

(⟨p[f/f ′′], ft2 , transρ(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; branch ℓb′(e), transρ2(ŝt))→

(⟨p[f/f ′′], ft2 , bt2⟩ | γ2[r 7→ γ2(e)] | µ′ | ν ′ | Ψ′; stream(bt2), transρ2(ŝt))

By assumption, inlined(ρ1), thus st1 consists of the instructions occurring after instruction

I ′k such that I ′k is the inlined call instruction in block bt1 . Also by assumption, ρ2 is ter-

minated by an element referencing I ′k, therefore transρ1(⟨ft1 , bt1 , r′, (st1 , ŝt)⟩ρ2) = transρ2(ŝt).

Additionally, as register contexts γ1 and γ2 are consistent with the strengthened induction,

they remain consistent after the parallel addition of register r′ in the last step of evaluation.

223

· · · The remaining cases are only described here. The remaining evaluation within a clone

of block b or within an inlined block can be proven by application of the lemmas described

in Section 6.B. The latter cases requires an symmetric but alternate case analysis due to the

translation of registers in the inlined region.

[Slot ← Refinement] We define the predicate inlined, as follows, that determines if the

given block exists in f ′′ due to the transformation. This predicate is true when the block

label does not exist in the set of block labels that originated from function f (including the

labels of blocks b1 and b2).

inlined(ft, bt) = ft ∈ C(f ′′) ∧ lab(bt) ̸∈ {lab(b) | b ∈ body(f)} ∪ {ℓb′}

We also define the partial function choose, as follows, that returns the clone of the currently

inlined function in the parallel evaluation of f for a given evaluation context. The result

of this function is undefined when the current state of evaluation does not transfer control

to or keep control within the set of inlined blocks. In the other cases, control is either

transferred to an inlined block (in which case this function returns the target function of the

last element of ρ), or is transferred away from an inlined block via a function call (in which

case this function returns the source function of the last element of ρ).

choose(ρ) =


trans−1(f ′t2) last(ρ) = (⟨f ′t1 , b

′
t1
, c′⟩, ⟨f ′t2 , b

′
t2
⟩) ∧ inlined(f ′t2 , b′t2)

trans−1(f ′t1) last(ρ) = (⟨f ′t1 , b
′
t1
, c′⟩, ⟨f ′t2 , b

′
t2
⟩) ∧ inlined(f ′t1 , b′t1)

We refine the translation of functions by mapping clones of function f ′′ to either a clone

of function f or a clone of function f̈ , depending on whether or not evaluation is currently

within an inlined block. In the following, we use bt to mean the block in the same step of

224

evaluation of function f ′′ as when the trans−1 relation is applied.

trans−1(ft) =



f [−→σft] ft ∈ C(f ′′) ∧ ¬inlined(ft, bt)

f̈ [−→σft] inlined(ft, bt)

ft otherwise

We refine the translation of blocks by mapping clones of blocks b1 and b2 back to a clone

of block b. Additionally, the terminators of inlined blocks that branch back to block b2 are

replaced by a return of the same value.

trans−1(⟨ft, bt⟩) =



b[−→σft] ∈ C(b1) ∪ C(b2)

bt[branch ℓb′ (e)/return e] inlined(ft, bt)

bt otherwise

We refine the translation of streams by replacing the terminator of clones of block b1 with the

inlined call instruction and append the stream of the clone of block b2 in the same function.

Additionally, we replace the terminator of clones of inlined blocks that branch back to block

b2 with a return of the same value. For brevity, we decompose the stream st into (s′t, Tt) in

the following.

trans−1ρ (⟨ft, bt, (st, ŝt)⟩) =



s′t ∪ ⟨Ik, Ik+1, T ⟩[−→σft] bt ∈ C(b1)

(s′t, return e, trans−1ρ (ŝt) inlined(ft, bt) ∧ Tt = branch ℓb′(e))

st, trans−1ρ (ŝt) otherwise

We refine the translation of return contexts by adding an additional layer when the state

of evaluation is within the inlined region. This layer points to the instruction stream that

occurs after the inlined callsite in a clone of block b. In effect, this adds a stack frame entry

of the inlined region. For legibility, we define the trans′ relation, which translates return

225

contexts and the empty return context in the default way.

trans−1ρ (ŝ) =


⟨f ′t , blockf ′

t
(ℓb), r[

−→σf ′
t
], (s2[

−→σf ′
t
], trans′(ŝ))⟩ ft = trans−1(choose(ρ))

trans′(ŝ) otherwise

trans′(ŝ) =


⟨trans−1(ft), trans−1(bt), rt, trans−1ρ′ (⟨ft, bt, s⟩)⟩ ŝ = ⟨ft, bt, rt, s⟩ρ′

ϵ ŝ = ϵ

We use the same relationship for register contexts as the forward case (with the same

abuses of notation).

[Slot ← Invokability] If bt2 ∈ C(b1), then bt1 = b[−−→σft1]. Otherwise, bt2 = bt1 . In either

case, the unmodified streams and register contexts are consistent with the strengthened

induction without an additional step of evaluation.

[Slot ← Asymmetric Evaluation] By the refined trans−1 relation, all temporarily di-

verging steps of evaluation occur in blocks b1 and b2 or within the function call which is

inlined by the transformation.

Inlined Call First, we cover the case where the (n′+1)-th step of evaluation of f ′′ transfers

control into the inlined region by application of rule E-Switch. Here, bt2 ∈ C(entry(f ′)),

and dom(param(bt2)) = ⟨ri⟩.

(p[f/f ′′] | γ | µ | ν | Ψ; f ′′(vti))→n′

ρ′1

(⟨p[f/f ′′], ft2 , bt)⟩ | γ2 | µ′ | Ψ′; branch ℓb(ei), ŝt)→ρ′2

(⟨p[f/f ′′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft = trans−1(ft2) on the inlined callsite of block trans−1(bt) ∈ C(b). Evaluation proceeds by

226

application of rule E-Call. Here, ft1 ∈ C(f ′), bt1 = entry(ft1), and dom(param(bt1)) = ⟨r′i⟩.

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft, trans−1(bt)⟩ | γ1 | µ′ | ν ′ | Ψ′; r′ ← call(rc, ei), st, trans−1ρ′1
(ŝt))→

(⟨p, ft1 , bt1⟩ | γ1[r′i 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ⟨ft, bt, r′, (st, trans−1ρ′1
(ŝt))⟩)

The predicate inlined(ft1 , ft2) is true and the blocks and their unmodified streams are con-

sistent with the strengthened induction. Because the last element of ρ′2 is a switch into the

inlined block, the translation of the resulting return context must add a layer that will assign

the register symmetric to r and resume the instruction stream symmetric to s2 – these are

precisely r′ and st with respect to function ft. Additionally, register contexts γ1 and γ2 are

consistent with the strengthened induction, and the following relationships hold with respect

to the register substitutions uniquely defining the register spaces of functions ft1 and ft2 .

−−→σft1 ⊆ {pi 7→ r′i | pi ∈ dom(param(bt1))} −−→σft2 ⊆ {pi 7→ ri | pi ∈ dom(param(bt2))}

Then, for each register ∀ri ∈ {ri} · σ(ri) = r′i and the register contexts γ1[r′i 7→ γ1(ei)] and

γ2[ri 7→ γ2(ei)] are also consistent with the strengthened induction.

Inlined Return Next, we cover the case where the (n′+1)-th step of evaluation of f ′′ trans-

fers control back from the inlined region by rule E-Switch. Here, ft1 ∈ C(f ′′), bt2 ∈ C(b2),

and dom(param(bt2)) = ⟨r′⟩. Notice that the last element of ρ′1 must be a switch or a return

back to block bt.

(p[f/f ′′] | γ | µ | ν | Ψ; f ′′(vti))→n′

ρ′1

(⟨p[f/f ′′], ft2 , bt⟩ | γ2 | µ′ | Ψ′; branch ℓb′(e), ŝt2)→ρ′2

(⟨p[f/f ′′], ft2 , bt2⟩ | γ2[r′ 7→ γ2(e)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2)

227

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans−1(ft2) on a return back to the inlined callsite by application of rule E-Return.

Then, as the predicate inlined(ft2 , bt) is true, trans−1ρ′1
(ŝt2) = (ft1 , b[

−−→σft1], r
′, s2[
−−→σft1], ŝt1).

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft, trans−1(⟨ft2 , bt⟩)⟩ | γ1 | µ′ | ν ′ | Ψ′; return e, trans−1ρ′1
(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[r′ ← γ1(e)] | µ′ | ν ′ | Ψ′; s2[−−→σft1], ŝt1)

The return block is a clone of block b and the instruction stream consists of the instruction

that occur in block b after the call (this is precisely the stream s2). The resulting return

contexts are trivially consistent with the strengthened induction with respect to the evalu-

ation path ρ′2, as ŝt1 is the exact translation of ŝt2 under the previous evaluation context.

Additionally, as register contexts γ1 and γ2 are consistent with the strengthened induction,

they remain consistent after the parallel addition of register r′ in the last step of evaluation.

· · · As in the forward case, we omit the remaining evaluation within a clone of block b1,

block b2, or within the inlined region.

Theorem 9.D.2. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. By Lemma 9.D.1 and Theorem 8.B.8.

Corollary 9.D.3. If there is at least one exit block of function f ′, then the set of paths

over block labels from ℓ0 to ℓb′ in Gfout for some block b′ ∈ B where lab(b′) = ℓb′ can be

constructed by replacing subpaths in the set of such paths in Gf as follows: replace all

edges matching the form (ℓb, lab(c)) where c ∈ succf (b) with a subpath from the family of

228

subpaths ⟨ℓb, Pf ′ , ℓb′ , lab(c)⟩. Here, Pf ′ expands to all complete paths through function f ′

from the entry block to some exit block of f ′. If there are no exit blocks of function f ′, then

the set of paths over block labels from ℓ0 to ℓb in Gfout can be extended by the set of infinite

paths of f ′ from the entry block to any reachable block in f ′.

Before we can state the maintenance properties of the inline procedure, we need to

define several lemmas to show that the approximate loop nesting forest constructed directly

before the eject procedure is in the form assumed by ejection. First, we show that the

approximate loop nesting forest contains the correct number of loops and each loop has the

correct header. In the following lemmas, we refer to function fi and the deconstructed loop

triple (Hi, Li, Xi) as the inputs of the eject procedure. These are equivalent to function

f ′ and the triple (H ′, L′, X ′) in Figure 8.23 but are renamed to reduce ambiguity with the

names of Figure 9.42.

Lemma 9.D.4. If f and f ′ are in canonical form, then dom(Hi) = {lab(l′) | l′ ∈ Ffi}.

Proof. The blocks and edges introduced to function f include the entire structure of function

f ′ as well as the forward edges (b1, b′) and (e, b2) for each exit e of f ′. The forest Ff ′ contains

a loop for every backedge introduced to the graph. The remainder of the proof then proceeds

identically to Lemma 8.B.3.

Now we show that the approximate loop nesting forest forms a subset lattice (the nesting

structure of loops is somewhat correct – an inner loop with too many blocks in its body set

may be nested under a descendant of its true parent).

Lemma 9.D.5. The loop nesting forest reconstructed from (Hi, Li, Xi) forms a subset lat-

tice.

Proof. All blocks of f ′ are added to the body set of loop l as well as the body set of

its ancestors. As loop nesting forests LFf
and LFf ′

form subset lattices by definition, the

229

addition of blocks to the union to a set and all of its supersets do not break this property.

The remainder of the proof then proceeds identically to Lemma 8.B.4.

Now we show that every loop in the approximate loop nesting forest has a body set

containing a superset of the correct blocks. This is stated formally in Lemma 9.D.6. This

property ensures that blocks must only be ejected from the loop to correct the body set, and

no additional blocks can be brought in from the outside.

Lemma 9.D.6. If f and f ′ are in canonical form, then bodyfi(l
′) ⊆ S for each l′ ∈ Fi where

S is the set of blocks composing the body of the loop with header headerfi(l′) reconstructed

from Hi and Li.

Proof. First, no internal edges of function f ′ are altered and the duplicated loop structure

must encode the correct body sets. Second, no block introduced to a graph can belong to

a strongly connected component that does not also contain block b1 as each such block is

dominated by b1. The remainder of the proof then proceeds identically to Lemma 8.B.5.

Now we show that the exits of each loop are correct with respect to the claimed body

set. Naturally, this implies the exit sets for loops with an accurate body set are correct.

Lemma 9.D.7. If f and f ′ are in canonical form, then the exit set of a loop l′ is consistent

with its body set for every loop l′ in the loop nesting forest reconstructed from (Hi, Li, Xi).

Proof. All blocks of f ′ are added to the body set of loop l as well as the body set of its

ancestors. Any new edge leaving a block of f ′ targets block b2, which is also contained in

loop l. Then, no new edges are introduced that cross a boundary of a claimed loop body.

The remainder of the proof then proceeds identically to Lemma 8.B.6.

Now we show that all inaccurate loops can be found on a single path in the claimed loop

nesting forest.

230

Lemma 9.D.8. If f and f ′ are in canonical form, then all loops with an inaccurate body set

exists on the same ancestor path in the loop nesting forest reconstructed from (Hi, Li, Xi).

Proof. By Corollary 9.D.3, all strongly connected components altered by the introduction of

the subgraph f ′ also contain block b. Then, the only loops that contain superfluous blocks

in their body are ancestor of loopf (b). The remainder of the proof then proceeds identically

to Lemma 9.D.8.

Finally, we can state the maintenance theorems for the inline procedure.

Theorem 9.D.9. If f and f ′ are in canonical form, then fout is in canonical form.

Proof. All loops of function f ′ are in canonical form and the introduction of the subgraph

f ′ cannot undedicate the preheader or exits of the loops containing block b. Then, the

remainder of the proof then proceeds identically to Lemma 8.B.10.

Theorem 9.D.10. If f and f ′ are in LCSSA form, then fout is in LCSSA form.

Proof. The registers of functions f and f ′ are disjoint, thus there are no uses of any register

defined in f ′ are used outside of the inlined subgraph. All movement of uses are then caused

by an application of the eject procedure, and the remainder of the proof then proceeds

identically to Lemma 8.B.11.

Theorem 9.D.11. If p | f and p | f ′ are well-typed and f and f ′ are in SSA form, then

p | fout is well-typed.

Proof. The implicit block parameter and nonlocal block parameter sets of the entry of func-

tion f ′ are empty. Then, if block b2 remains reachable after the introduction of the subgraph

f ′, then nonlocalfout(b1) = nonlocalf (b) and nonlocalfout(b1) = param(b1) otherwise. In the

former case, nonlocal parameters are only removed from the set and cannot adversely affect

231

previously well-typed derivations. In either case, the definitions on the path to b1 have not

been affected and the nonlocal parameter set for the entry of f remains empty. Additionally,

it is worth nothing that if block b2 remains reachable, every block of f ′ gains the nonlocals

of block b2 as no definition of f ′ can kill a use required by a block of f .

Now, we show that the altered blocks b1, b2, and the exits of f ′ are also well-typed.

Let Γ0
0 = param(b1), nonlocalf (b1). First, we show that (p fout | Γ0

0) ⊢ stream(b1). Here,

stream(b1) = s1 and the derivation begins in identical fashion as the first k steps of stream(b).

Next, we show that (p fout | Γ0
k) ⊢ branch ℓb′(ei). By inversion of rule T-Call on the stream

of b, Γ0
k ⊢ ei : ti. Here, each type ti matches a symmetric parameter of block b′. As stated

above, block b′ has no nonlocal block parameters. Then, derivation proceeds by application

of rules T-Switch and T-Ref and block b1 is well-typed.

Let Γ1
0 = param(b2), nonlocalf (b2). Next, we show that (p fout | Γ1

0) ⊢ stream(b2). Here,

param(b2) = ⟨r : t′⟩, which is the same register and yielded by the call instruction of b,

nonlocalfout(b2) \ def(b) = nonlocalf (b), and stream(b2) = s2. Then, Γ1
0 is equivalent to the

register typing context at the k-th step of evaluation of stream(b) and the derivation of both

streams proceed in identical fashion.

Lastly, we show that each modified exit of f ′ is well-typed. Let block e be such an exit.

The initial typing derivation of the original and modified blocks proceed identically until the

terminator. In the derivation of the original block, (p fout | Γ2) ⊢ return ei is well-typed by

inversion of rule T-Return such that Γ2 ⊢ ei : t′. Here, t′ is the target type of block b2’s

only parameter. As stated above, the set of nonlocals of each block in b is a superset of the

nonlocals of block b2. Then, (p fout | Γ2) ⊢ branch ℓb2(ei) is well-typed by application of

rule E-Switch.

Theorem 9.D.12. The unique dominator tree of Gfout is D′.

Proof. As there is no path to any block originating from function f ′ that does not pass

232

through entry(f ′), no immediate dominator encoded by the subtree Df ′ changes with respect

to function fout. By Corollary 9.D.3, the blocks that change dominators are blocks b1 and b2

(not present in function f), and the set of blocks that were previously immediately dominated

by block b (as their new predecessor is now block b2). As block b1 takes takes the place of

block b in path through the graph, it also takes it place in the dominator tree. As block b1

and block b have the same label, no mapping is necessary (and this relationship is already

encoded in Df). Next, all paths to the inlined call function must pass through block b1 thus,

block b1 immediately dominates block entry(f ′) (and, transitively, dominates all blocks in f ′).

Lastly, we show the domination relationships around block b2. First suppose that the inlined

function contains at least one exit block. By Corollary 9.D.3, the set of all paths to block

b2 must travel through an exit of the inlined function f ′ and the immediate dominator of b2

is the nearest common ancestor of all such exits in Df ′ . Additionally, block c ∈ childDf
(b)

must pass through block b2 (after passing through its original dominator) by Corollary 9.D.3

and block b2 dominates block c. Now, suppose that the inlined function contains no return

instructions (and consists entirely of a series of unbreakable loops). Then, block b2 is not

reachable, nor are any of the blocks dominated by block b. These blocks are removed from

the function, as well as Dout, by application of the post delete edge procedure.

Theorem 9.D.13. If f is in canonical form, then Fout reconstructed from (Hout, Lout, Xout)

is the unique loop nesting forest of Gfout .

Proof. By application of Lemma 9.D.4 through Lemma 9.D.8 and Theorem 8.A.9.

233

9.E Loop Unswitching

In this section, we refer to the unswitch transformation (notated below). For specific details

(including names of intermediate components), refer to Figure 9.52.

(f,Df , HFf
, LFf

, XFf
)

unswitch−−−−−→
l,⟨f,b⟩

(fout, Dout, Hout, Lout, Xout)

Lemma 9.E.1. Assume p | f is well-typed. If f can be evaluated n steps with some register

context, memory context, nondeterminism state, and effects list, then f ′ can be evaluated

for n′ steps with the same initial context and arguments and reach a state with the same

memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. We prove by filling in the slots of Template 6.A.1.

[Slot → Refinement] We define the predicate version, as follows, that selects the version

of the loop l that would be entered based on the value of r ∈ γ1. This relates directly to the

branching behavior of the new preheader p′. In the following, we use γ1 to mean the register

context in the same step of evaluation of function f as predicate is applied.

version(γ1) =


l′i γ1(r) = cvi

l otherwise

We refine the translation of blocks by mapping clones of a block in l to the symmetric

clone of a block in the duplicate loop. We refine the translation of streams by replacing

the terminator of clones of block p with the terminator that unconditionally switches to the

234

chosen default block. For brevity, we decompose the stream st into (s′t, Tt).

trans(⟨ft, bt⟩) =



p′[−→σft] bt ∈ C(p)

b′[−→σft] bt ∈ C(b) ∧ version(γ1) = l

b′i[
−→σft] bt ∈ C(b) ∧ version(γ1) = l′i

blockf ′
k
(σLi

(lab(bt))[−→σft] bt ∈ C(bodyf (l)) ∧ version(γ1) = l′i

bt otherwise

trans(⟨ft, bt, (st, ŝt)⟩) =



(s′t, T
′[−→σft]), trans(ŝt) bt ∈ C(p)

(s′t, T
′
i [
−→σft]), trans(ŝt) bt ∈ C(b) ∧ version(γ1) = l′i

(s′t, Tt[σLi
]), trans(ŝt) bt ∈ C(bodyf (l) \ {b}) ∧ version(γ1) = l′i

st, trans(ŝt) otherwise

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot → Invokability] The entry block of f cannot be in loop l as the loop is assumed

to have a dedicated preheader. If bt1 = p, then bt2 = p′[−−→σft1]. Otherwise, bt2 = bt1 . In either

case, the unmodified streams and register contexts are consistent with the strengthened

induction without an additional step of evaluation.

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur at the terminator of a clone of p, a clone of block b or its

duplicates, or within the body of l when γ1(r) ̸= unit.

235

Preheader First, we cover the case where the (n+ 1)-th step of evaluation of f transfers

control from block bt ∈ C(p) by application of rule E-Switch. Here, bt1 ∈ C(header(l)).

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt⟩ | γ1 | µ′ | ν ′ | Ψ′; branch ℓh(ei), ŝt1)

→ (⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ŝt1)

By our strengthened inductive hypothesis, the n′-th step of evaluation of f ′ stops in function

ft2 = trans(ft1) on a terminator that transfers control from block trans(⟨ft1 , bt⟩), as shown

below, such that γ1 and γ2 are consistent with the strengthened induction. The (n′ + 1)-th

step of evaluation of f ′ proceeds by application of rule E-Switch. Here, bt2 corresponds to

a clone of the header of the version of loop l targeted by the switch with the constant value

γ1(r).

(p[f/f ′] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/f ′], ft2 , trans(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; T ′[−−→σft1], trans(ŝt1))→

(⟨p[f/f ′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), trans(ŝt1))

Switched Block Next, we cover the case where the (n + 1)-th step of evaluation of f

transfers control from block bt ∈ C(b) by application of rule E-Switch.

(p | γ | µ | ν | Ψ; f(vti))→n (⟨p, ft1 , bt⟩ | γ1 | µ′ | ν ′ | Ψ′; switch r cvi 7→ refi refd, ŝt1)

→ (⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ŝt1)

By our strengthened inductive hypothesis, the n′-th step of evaluation of f ′ stops in function

ft2 = trans(ft1) on a terminator that transfers control from block trans(⟨ft1 , bt⟩), as shown

below, such that γ1 and γ2 are consistent with the strengthened induction. The (n′ + 1)-th

step of evaluation of f ′ proceeds by application of rule E-Switch. First, suppose that refd

was the block reference taken duration evaluation of f . Then, γ1(r) ̸= cvi for any switch

236

case in the terminator of b, bt ∈ C(b′), and bt2 = C(bt1).

(p[f/f ′] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/f ′], ft2 , trans(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; branch cvi 7→ refi refd, trans(ŝt1))→

(⟨p[f/f ′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), trans(ŝt1))

Now, suppose that refj was the block reference taken duration evaluation of f . Then,

γ1(r) = cvj, bt ∈ C(b′j), and bt2 ∈ C(blockf ′
k
(σLj

(lab(bt1)))).

(p[f/f ′] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/f ′], ft2 , trans(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; switch cvj cvi 7→ refi refd, trans(ŝt1))→

(⟨p[f/f ′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), trans(ŝt1))

Loop Body Next, we cover the cases where the n-th step of evaluation of f is within loop l

and version(γ1) = li, where γ1 is the register context at step n of evaluation of f . If evaluation

of f is not yet at a terminator, then this case is trivial by application of Lemma 6.C.1. Now,

consider when the (n + 1)-th step of evaluation of f evaluates a terminator (distinct from

the switched terminator in a clone of block b). This terminator is necessarily a switch as

evaluation is currently within a loop. By our strengthened inductive hypothesis, the n′-th

step of evaluation of f ′ stops at a state with a symmetric function, block, terminator, and

register context. Let T1 and T2 be the terminator in the evaluation of functions f and f ′,

respectively. Here, T2 = T1[σLi
]. By application of Lemma 6.B.3, the resulting blocks are

either the same or mappable through σLi
. The blocks and their unmodified streams are

consistent with the strengthened induction. Additionally, the resulting register contexts are

extended with the same set of register-value pairs, which does not violate the strengthened

induction.

237

[Slot ← Refinement] We refine the translation of blocks and streams by collapsing all

blocks (and block references) that belong to the duplicated loop to the symmetric block (and

reference to the symmetric block) in the original loop. Let σ−1L =
∪
σ−1Li

, which maps a label

of a duplicated block back to its source (notice that the codomain of each σLi
is unique). Let

BD = (C(bodyf ′(l′))∪C(latchf ′(l)))\C({b′, b′j}). This denotes the set of blocks that reference

a duplicated block in function f ′. For brevity, we decompose the stream st into (s′t, ŝt).

trans(⟨ft, bt⟩) =



p[−→σft] bt ∈ C(p′)

b[−→σft] bt ∈ C(b′) ∪ C(b′j)

blockf (σ−1L (lab(bt))[−→σft] bt ∈ BD

bt otherwise

trans(⟨ft, bt, (st, ŝt)⟩) =



(s′t, latch(p)[−→σft]), trans(ŝt) bt ∈ C(p′)

(s′t, latch(b)[−→σft]), trans(ŝt) bt ∈ C(b′)

(s′t, Tt[σ
−1
L]), trans(ŝt) bt ∈ BD

st, trans(ŝt) otherwise

We add the following additional relationship between register contexts.

γ2 = γ1

[Slot ← Invokability] If bt2 = p′, then bt1 = p[−−→σft2]. Otherwise, bt1 = bt2 . In either case,

the unmodified streams and register contexts are consistent with the strengthened induction

without an additional step of evaluation.

[Slot ← Asymmetric Evaluation] By the refined trans−1 relation, all temporarily di-

verging steps of evaluation occur at the terminator of a clone of p, a clone of block b′, a clone

238

of some block b′j, or within the body of some loop li.

Preheader First, we cover the case where the (n′+1)-th step of evaluation of f ′ transfers

control from block bt ∈ C(p′) by application of rule E-Switch.

(p[f/f ′] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/f ′], ft2 , bt⟩ | γ2 | µ′ | Ψ′; T ′[−−→σft1], ŝt2)→

(⟨p[f/f ′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans−1(ft2) on a terminator that transfers control from block trans−1(⟨ft2 , bt⟩), as

shown below, such that γ1 and γ2 are consistent with the strengthened induction. The

(n+ 1)-th step of evaluation of f proceeds by application of rule E-Switch such that

trans−1(⟨ft2 , bt⟩) ∈ C(p) and σ−1L (lab(bt2)) = ℓh by translation.

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft2 , bt⟩)⟩ | γ1 | µ′ | ν ′ | Ψ′; branch ℓh(ei), trans−1(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), trans−1(ŝt2))

Switched Block Next, we cover the case where the (n′ + 1)-th step of evaluation of f

transfers control from block bt ∈ C(b′)∪ C(b′j) by application of rule E-Switch. Notice that

cv = unit when bt ∈ C(b′).

(p[f/f ′] | γ | µ | ν | Ψ; f ′(vti))→n′

(⟨p[f/f ′], ft2 , bt⟩ | γ2 | µ′ | Ψ′; switch cv cvi 7→ refi refd, ŝt2)→

(⟨p[f/f ′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans−1(ft2) on a terminator that transfers control from block trans−1(⟨ft2 , bt⟩) ∈ C(b),

239

as shown below, such that γ1 and γ2 are consistent with the strengthened induction. The

(n+ 1)-th step of evaluation of f proceeds by application of rule E-Switch.

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft2 , bt⟩)⟩ | γ1 | µ′ | ν ′ | Ψ′; switch r cvi 7→ refi refd, trans−1(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), trans−1(ŝt2))

First, we consider the case where bt is a member of loop l. As all paths into this loop must

pass through the modified preheader and r is not assigned within loop l, it must be the

case that γ1(r) = γ2(r) = unit. Then, the switch value and switch cases are the same and

symmetric block references are taken. Next, we consider the case where bt is a member of

some loop l′j. Again, by the path through the modified preheader, it must be the case that

γ1(r) = γ2(r) and a symmetric block reference is taken. Then, the resulting blocks are either

the same or mappable through σ−1L . The blocks and their unmodified streams are consistent

with the strengthened induction.

Loop Body Next, we cover the cases where the n′-th step of evaluation of f ′ is within

loop li. If evaluation of f ′ is not yet at a terminator, then this case is trivial by application

of Lemma 6.C.1. Now, consider when the (n′ + 1)-th step of evaluation of f ′ evaluates a

terminator (distinct from the switched terminator in a clone of block b). This terminator is

necessarily a switch as evaluation is currently within a loop. By our strengthened inductive

hypothesis, the n-th step of evaluation of f stops at a state with a symmetric function,

block, terminator, and register context. Let T1 and T2 be the terminator in the evaluation

of functions f and f ′, respectively. Here, T1 = T2[σ
−1
Li
]. By application of Lemma 6.B.3,

the resulting blocks are either the same or mappable through σ−1Li
. The blocks and their

unmodified streams are consistent with the strengthened induction. Additionally, the re-

sulting register contexts are extended with the same set of register-value pairs, which does

240

not violate the strengthened induction.

Theorem 9.E.2. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. By application of 9.E.1, Theorem 7.E.1, Theorem 7.F.1, and Theorem 7.A.1.

Corollary 9.E.3. The set of paths over block labels from ℓ0 to ℓb′ in Gf ′ for some block

b′ ∈ B where lab(b′) = ℓb′ can be constructed by replacing each minimal subpath of the form

p = ⟨lab(header(l)), . . . , ℓe⟩ where ℓe ∈ exit(l) by the path p[σLi
] for some σLi

in the set of

such paths in Gf .

Theorem 9.E.4. If f is in canonical form, then fout is in canonical form.

Proof. By Corollary 9.E.3, all additional paths that can break canonical form occur at the

boundaries of the duplicated loops. The preheaders and exits of the original loop and each

duplicated loop are subsequently dedicated. Therefore, no canonical form violations can

remain.

Theorem 9.E.5. If f is in LCSSA form, then fout is in LCSSA form.

Proof. As loop l contains all uses of any definition in l, each duplication of l has the same

property. The application of rewrite uses then effectively maps the set of registers defined

by def(l) to a set of fresh registers for each duplicated loop. This is obvious as the reaching

definition of each such use is the unique definition of the used register. Clearly, no additional

violating uses are introduced to the function.

Lemma 9.E.6. If p | f is well-typed and f is in SSA form, then p | f ′ is well-typed.

241

Proof. Each block b ∈ bodyf (l) and its duplicates have the same set of register uses. By

Corollary 9.E.3, the set of register uses reachable from block b and the set of register uses

reachable from one of its duplicates are equivalent. Further, each block b and its duplicates

also define the same registers and thus have the same implicit block parameters and nonlocal

block parameters. Clearly, blocks b and its duplicates have identical typing derivations. Let

ref be the block reference in block p. As ref is well-typed, all references in block p′ are

similarly well-typed as each reference has identical arguments, and each target block has the

same set of parameters and nonlocal implicit parameters. As all predecessors of block p′

have the same set of nonlocal block parameters, it follows that block p and p′ have identical

nonlocal block parameters.

Theorem 9.E.7. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. By application of 9.E.6, Theorem 7.E.4, Theorem 7.F.3, and Theorem 7.A.2.

In order for this transformation to maintain domination, we add the additional require-

ment that the exits of the input function are dedicated. While this is not an explicit re-

quirement for maintenance in the other transformations, it is an implicit assumption in the

design of the optimizer described in this work.

Lemma 9.E.8. If all exits of f are dedicated, then the unique dominator tree of Gf ′ is D′′.

Proof. As there is no path to any block originating from a duplicate loop l′k that does not

pass through block header(l′), no immediate dominator encoded by the subtree D′k changes

with respect to function f ′. By Corollary 9.E.3, the blocks that change dominators are the

headers of the duplicate loops (not present in f) and the set of blocks not in l but dominated

by a block of l (each such block now has an additional set of paths that travel through a

duplicate loop). Each such header is dominated by p′, as each such header has exactly two

242

predecessors: block p′ and its own latch. The remaining blocks are also dominated by p′ as

p′ is the last dominating block on all paths until one of the k + 1 loops are entered.

Theorem 9.E.9. If all exits of f are dedicated, then unique dominator tree of Gfout is Dout.

Proof. By application of 9.E.8, Theorem 7.E.5 and Theorem 7.F.4.

Lemma 9.E.10. If f is in canonical form, then F ′ reconstructed from (H ′, L′k, X
′
k) is the

unique loop nesting forest of Gf ′ .

Proof. Each backedge introduced to the graph was done so by application of the duplicate

procedure, which also duplicates the structure of l in the loop nesting forest. Clearly, the

loop bodies and exit sets of the duplicated loops are correct. Additionally, as no edge was

removed from the graph, each loop of Gf ′ is represented one-to-one by an entry in F ′. Let

b ̸∈ bodyf (l) be a block reachable from the body of l. By Corollary 9.E.3,b is also reachable

from the body of each duplicated loop l′i via a set of symmetric paths. Thus, l′i must be

immediately nested within pFf
(l).

Theorem 9.E.11. If f is in canonical form, then Fout reconstructed from (Hout, Lout, Xout)

is the unique loop nesting forest of Gfout .

Proof. By application of Lemma 9.E.10, Theorem 7.E.6 and Theorem 7.F.5.

9.F Loop Unrolling

In this section, we refer to the unroll transformation (notated below). For specific details

(including names of intermediate components), refer to Figure 9.62.

(f,Df , HFf
, LFf

, XFf
)

unroll−−−→
l

(fout, Dout, Hout, Lout, Xout)

243

Lemma 9.F.1. Assume p | f is well-typed. If f can be evaluated n steps with some register

context, memory context, nondeterminism state, and effects list, then f ′′ can be evaluated

for n′ steps with the same initial context and arguments and reach a state with the same

memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. We prove by filling in the slots of Template 6.A.1.

[Slot → Refinement] We define the predicate odditer, as follows, that determines whether

or not the evaluation is within an odd number iteration of the loop unrolled by the transfor-

mation (assuming evaluation is within the loop at all). This will be necessary as every other

iteration of the loop will cause the parallel evaluation to enter the duplicated loop instead of

the original. This predicate is true if the last occurrence of the preheader terminator occurs

in the evaluation path is followed by an odd number of latch terminators.

odditer(ρ, ft) =



true ⟨. . . , (p,_), (ci, bi)⟩

where (∀ci · ci ̸= p) ∧ |{ci | ci = Tl[
−→σft]}| is odd

false otherwise

where p = ⟨ft, bp, term(bp)⟩, bp = preheader(l)[−→σft], and Tl = term(latch(l))

We refine the translation of blocks by mapping clones of a block in l to the symmetric

clone of a block in the duplicate loop. We refine the translation of streams by replacing the

terminator of clones of the latch of l with terminators that target the relevant clone of the

244

duplicate loop header. For brevity, we decompose the stream st into (s′t, ŝt).

trans(⟨ft, bt⟩) =



bl[
−→σft] bt ∈ C(latchf (l)) ∧ ¬odditer(ρ)

blockf ′′(σL(lab(bt))[−→σft] bt ∈ C(bodyf (l)) ∧ odditer(ρ)

bt otherwise

trans(⟨ft, bt, (st, ŝt)⟩) =



(s′t, Tt[ℓh/ℓh′]), transρ(ŝt) bt ∈ C(latchf (l)) ∧ ¬odditer(ρ)

(s′t, Tt[σL][ℓh′/ℓh]), transρ(ŝt) bt ∈ C(latchf (l)) ∧ odditer(ρ)

(s′t, Tt[σL]), transρ(ŝt) bt ∈ C(bodyf (l)) ∧ odditer(ρ)

st, transρ(ŝt) otherwise

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot → Invokability] If the entry block of f is the latch of loop l (which can occur when

canonical form is broken and the entry block forms a self-loop), then bt2 = bl[
−−→σft1]. Otherwise,

the predicate odditer(ρ) is false on entry and bt2 = bt1 . In either case, the unmodified streams

and register contexts are consistent with the strengthened induction without an additional

step of evaluation.

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur at the terminator of a clone of latch(l) or within the body of l

on odd iterations.

Latch Next, we cover the case where the (n+1)-th step of evaluation of f transfers control

from block bt ∈ C(latch(l)). Let T = switch v cvi 7→ refi refd and let ref = ℓb(ei) be the

245

block reference taken by this step of evaluation.

(p | γ | µ | ν | Ψ; f(vti))→n
ρ1

(⟨p, ft1 , bt⟩ | γ1 | µ′ | ν ′ | Ψ′; T, ŝt1)

→ρ2 (⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ŝt1)

By our strengthened inductive hypothesis, the n′-th step of evaluation of f ′′ stops in function

ft2 = transρ1(ft1) on a terminator that transfers control from block transρ1(⟨ft1 , bt⟩), as shown

below, such that γ1 and γ2 are consistent with the strengthened induction. The (n′ + 1)-th

step of evaluation of f ′′ proceeds by application of rule E-Switch by taking the symmetric

switch case.

(p[f/f ′′] | γ | µ | ν | Ψ; f ′′(vti))→n′

(⟨p[f/f ′′], ft2 , transρ1(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; T ′, transρ1(ŝt1))→

(⟨p[f/f ′′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), transρ1(ŝt1))

First, consider the case where bt1 ∈ C(bh). Then, ℓb = ℓbh . If if the predicate odditer(ρ1)

is true, then trans(⟨ft1 , bt1⟩) ∈ C(b′l) and bt2 ∈ C(bh). Either bt2 = bt1 or, in the case

that bt1 forms a self-loop, bh = latch(l) and bt2 = bl[
−−→σft1]. Next, consider the case where

bt1 ∈ C(bodyf (l)). Then, ℓb ∈ dom(σL) and the blocks are either the same (when the predicate

odditer is false) or mappable through σL (when the predicate odditer is true). Lastly, consider

the case where bt1 ̸∈ C(bodyf (l)). Then, ℓb ̸∈ dom(σL) and bt2 = bt1 . In all cases, the blocks

and their unmodified streams are consistent with the strengthened induction.

Loop Body Next, we cover the cases where the n-th step of evaluation of f is within loop

l and the predicate odditer is true. If evaluation of f is not yet at a terminator, then this

case is trivial by application of Lemma 6.C.1. Now, consider when the (n+ 1)-th step of

evaluation of f evaluates a terminator (distinct from a clone of the latch). This terminator is

necessarily a switch as evaluation is currently within a loop. By our strengthened inductive

246

hypothesis, the n′-th step of evaluation of f ′′ stops at a state with a symmetric function,

block, terminator, and register context. Let T1 and T2 be the terminator in the evaluation of

functions f and f ′′, respectively. Here, T2 = T1[σL]. By application of Lemma 6.B.3, the re-

sulting blocks are either the same or mappable through σL. The blocks and their unmodified

streams are consistent with the strengthened induction. Additionally, the resulting register

contexts are extended with the same set of register-value pairs, which does not violate the

strengthened induction.

[Slot ← Refinement] We refine the translation of blocks and streams by collapsing all

blocks and block references that belong to the duplicated loop to the symmetric block (or

reference to the symmetric block) in the original loop. For brevity, we decompose the stream

st into (s′t, ŝt).

trans−1(⟨ft, bt⟩) =


blockf (σ−1L (lab(bt))[−→σft] bt ∈ C(bodyf ′′(l′) ∪ C(latchf ′′(l))

bt otherwise

trans−1(⟨ft, bt, (st, ŝt)⟩) =


(s′t, Tt[σ

−1
L]), trans−1(ŝt) bt ∈ C(bodyf ′′(l′) ∪ C(latchf ′′(l))

st, trans−1(ŝt) otherwise

We add the following additional relationship between register contexts.

γ2 = γ1

[Slot ← Invokability] It cannot be the cases that bt2 ∈ C(bodyf ′′(l′)). If the entry block

of f ′′ is the latch of loop l, then bt1 = latchf (l)[
−−→σft2]. Otherwise, bt1 = bt2 . In either case,

the unmodified streams and register contexts are consistent with the strengthened induction

without an additional step of evaluation.

247

[Slot ← Asymmetric Evaluation] By the refined trans−1 relation, all temporarily di-

verging steps of evaluation occur at the terminator of a clone of latch(l) or within the body

of l′.

Original Latch First, we cover the case where the (n′ + 1)-th step of evaluation of f ′′

transfers control from block bt ∈ C(latch(l)). Let T = switch v cvi 7→ refi refd and let

ref = ℓb(ei) be the block reference taken by this step of evaluation.

(p[f/f ′′] | γ | µ | ν | Ψ; f ′′(vti))→n′

(⟨p[f/f ′′], ft2 , bt)⟩ | γ2 | µ′ | Ψ′; T [ℓbh/ℓb′h], trans−1(ŝt1))→

(⟨p[f/f ′′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans−1(ft2) on a terminator that transfers control from block trans−1(⟨ft2 , bt⟩), as

shown below, such that γ1 and γ2 are consistent with the strengthened induction. The

(n + 1)-th step of evaluation of f proceeds by application of rule E-Switch by taking the

symmetric switch case.

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft1 , bt⟩⟩ | γ1 | µ′ | ν ′ | Ψ′; T, trans−1(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), trans−1(ŝt2))

First, consider the case where bt2 ∈ C(b′h). Then, ℓb = ℓb′h and bt1 ∈ C(bh) by translation.

In the other cases, bt2 ̸∈ C(bodyf ′′(l′), thus bt2 = bt1 . In all cases, the blocks and their

unmodified streams are consistent with the strengthened induction.

Loop Body Next, we cover the cases where the n′-th step of evaluation of f ′′ is within

loop l′. If evaluation of f ′′ is not yet at a terminator, then this case is trivial by application

248

of Lemma 6.C.1. Now, consider when the (n′ + 1)-th step of evaluation of f ′′ evaluates a

terminator (distinct from a clone of the latch). This terminator is necessarily a switch as

evaluation is currently within a loop. By our strengthened inductive hypothesis, the n-th

step of evaluation of f stops at a state with a symmetric function, block, terminator, and

register context. Let T1 and T2 be the terminator in the evaluation of functions f and f ′′,

respectively. Here, T1 = T2[σ
−1
L]. By application of Lemma 6.B.3, the resulting blocks are

either the same or mappable through σ−1L . The blocks and their unmodified streams are

consistent with the strengthened induction. Additionally, the resulting register contexts are

extended with the same set of register-value pairs, which does not violate the strengthened

induction.

Theorem 9.F.2. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. By application of Lemma9.F.1, Theorem 7.F.1, and Theorem 7.A.1.

Corollary 9.F.3. The set of paths over block labels from ℓ0 to ℓb′ inGf ′ for some block b′ ∈ B

where lab(b′) = ℓb′ can be constructed by replacing each path p1∪p2 where p1 and p2 are the

minimal subpaths of the forms ⟨lab(header(l)), . . . , lab(latch(l))⟩ and lab(header(l)), . . . , ℓe⟩,

respectively, and ℓe ∈ exit(l)∪ latch(l) by the path p1 ∪ p2[σL] in the set of such paths in Gf .

Theorem 9.F.4. If f is in canonical form, then fout is in canonical form.

Proof. As each exit of l has dedicated exits in f , and loop l′ shares the same exits, the exits

of the union of loops l and l′ are also dedicated. Let lc be a child of l and let l′c be the

loop duplicated from lc. These loops have the same exit sets but are siblings in the loop

nesting forest, thus each exit has necessarily become undedicated. These are precisely the

249

loops whose exits are rededicated by the transformation. No other paths outside of loop l

change by Corollary 9.F.3.

Theorem 9.F.5. If f is in LCSSA form, then fout is in LCSSA form.

Proof. All definitions and uses introduced into the intermediate function f ′ are those in loop

l′. Loops l and l′ merge to become one strongly connected component, so any additional

use in l′ is introduced to a loop that already used that register and thus is not a violation.

Similarly, let lc be a child of l and let l′c be the loop duplicated from lc. Loop lc and l′c are

siblings in the resulting loop nesting forest, and each use in l′c is then either defined by a

parent loop, or is defined by a definition also duplicated from lc. Then, the rest follows by

application of Theorem 7.A.7.

Theorem 9.F.6. If p | f is well-typed and f is in SSA form, then p | f ′′ is well-typed.

Proof. Each block b ∈ bodyf (l) and its duplicates have the same set of register uses. By

Corollary 9.F.3, the set of register uses reachable from block b and the set of register uses

reachable from one of its duplicates are equivalent. Further, each block b and its duplicates

also define the same registers and thus have the same implicit block parameters and nonlocal

block parameters. Both latches are modified to point to the opposite header. Both headers

have the same set of block parameters, implicit block parameters, and stream. Clearly, each

block b and its duplicates have identical typing derivations.

Theorem 9.F.7. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. By application of Lemma 9.F.6, Theorem 7.F.3, and Theorem 7.A.2.

Lemma 9.F.8. The unique dominator tree of Gf ′′ is D′′.

Proof. Block h′ is immediately dominated by latch(l) as it is its sole predecessor. All other

blocks inserted by application of the duplicate procedure has the correct immediate domina-

tor, as there is no direct path to any block that does not first travel through h′. Let b be

250

a block that change immediate dominator. By Corollary 9.F.3, this block must have been

previously dominated by a block in l for which there is no an additional path that instead

passes through the additional blocks. These set of such violating blocks are described com-

pletely by the set BD and each dominator is be calculated from the nearest common ancestor

in the old dominator tree as shown by Alstrup [8].

Theorem 9.F.9. The unique dominator tree of Gfout is Dout.

Proof. By application of Lemma 9.F.8 and Theorem 7.F.4.

Theorem 9.F.10. If f is in canonical form, then Fout reconstructed from (H ′′, L′′, X ′′) is

the unique loop nesting forest of Gf ′′ .

Proof. All blocks in l have a path to latch(l) in f . Similarly, all blocks in l′ have a path

to lath(l′) in f ′. Once the backedges are flipped, all blocks in l have a path to header(l′),

therefore all blocks in l′, and all blocks in l have a path to header(l) through the combined

loop’s backedge. Let lc be a child of l and let l′c be the loop duplicated from lc. Loop lc has

a preheader that previously belonged to loop l and loop l′c has a preheader that previously

belonged to loop l′. Both loops also share the same set of exits. As lc is a child loop of l,

one exit must exist on the path to the latch of its parent. Therefore, loop l′c can reach the

same latch and must be a sibling of lc.

Theorem 9.F.11. If f is in canonical form, then Fout reconstructed from (Hout, Lout, Xout)

is the unique loop nesting forest of Gfout .

Proof. By application of Lemma 9.F.11 and Theorem 7.F.5.

251

9.G Loop Peeling

In this section, we refer to the peel transformation (notated below). For specific details

(including names of intermediate components), refer to Figure 9.72.

(f,Df , HFf
, LFf

, XFf
)

peel−−→
l

(fout, Dout, Hout, Lout, Xout)

Lemma 9.G.1. Assume p | f is well-typed. If f can be evaluated n steps with some register

context, memory context, nondeterminism state, and effects list, then f ′′ can be evaluated

for n′ steps with the same initial context and arguments and reach a state with the same

memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. We prove by filling in the slots of Template 6.A.1.

[Slot → Refinement] s We define the predicate firstiter, as follows, that determines,

assuming evaluation is somewhere within the loop, whether or not evaluation is in the first

iteration of the loop peeled by the transformation. This will be necessary as every iteration

of the loop after the first causes the parallel evaluation to enter the duplicated loop rather

than the original. This predicate is true if the backedge terminator occurs after the last

occurrence of the preheader terminator in the evaluation path.

firstiter(ρ, ft) =



true ⟨. . . , (p, b′′), (ci, bi)⟩

where (∀ci · ci ̸= p) ∧ |{ci | ci = Tl[
−→σft]}| ≥ 0

false otherwise

where p = ⟨ft, bp, term(bp)⟩, bp = preheader(l)[−→σft], and Tl = term(latch(l))

We refine the translation of blocks by mapping clones of a block in l to the symmetric

clone of a block in the duplicate loop. We refine the translation of streams by replacing the

252

terminator of clones of the latch of l with a terminators that targets the relevant clone of

the duplicate loop header. For brevity, we decompose the stream st into (s′t, ŝt).

transρ(⟨ft, bt⟩) =



bl[
−→σft] bt ∈ C(latchf (l)) ∧ firstiter(ρ)

blockf ′′(σL(lab(bt))[−→σft] bt ∈ C(bodyf (l)) ∧ ¬firstiter(ρ)

bt otherwise

transρ(⟨ft, bt, (st, ŝt)⟩) =



(s′t, Tt[ℓbh/ℓb′h]), transρ(ŝt) bt ∈ C(latchf (l)) ∧ firstiter(ρ)

(s′t, Tt[σL]), transρ(ŝt) bt ∈ C(bodyf (l)) ∧ ¬firstiter(ρ)

st, transρ(ŝt) otherwise

We add the following additional relationship between register contexts.

γ1 = γ2

[Slot → Invokability] If the entry block of f is the latch of loop l (which can occur when

canonical form is broken and the entry block forms a self-loop), then bt2 = bl[
−−→σft1]. Otherwise,

the predicate firstiter(ρ) is true on entry and bt2 = bt1 . In either case, the unmodified streams

and register contexts are consistent with the strengthened induction without an additional

step of evaluation.

[Slot → Asymmetric Evaluation] By the refined trans relation, all temporarily diverg-

ing steps of evaluation occur at the terminator of a clone of latch(l) or within the body of

loop l.

Latch First, we cover the case where the (n + 1)-th step of evaluation of f transfers

control from block bt ∈ C(latch(l)) and the predicate firstiter(ρ1) is true. For legibility, we

253

let T = switch v cvi 7→ refi refd. Additionally, let ref = ℓb(ei) be the block reference taken

by this step of evaluation.

(p | γ | µ | ν | Ψ; f(vti))→n
ρ1

(⟨p, ft1 , bt⟩ | γ1 | µ′ | ν ′ | Ψ′; T, ŝt1)

→ρ2 (⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), ŝt1)

By our strengthened inductive hypothesis, the n′-th step of evaluation of f ′′ stops in function

ft2 = transρ1(ft1) on a terminator that transfers control from block transρ1(⟨ft1 , bt⟩), as shown

below, such that γ1 and γ2 are consistent with the strengthened induction. The (n′ + 1)-th

step of evaluation of f ′′ proceeds by application of rule E-Switch by taking the symmetric

switch case.

(p[f/f ′′] | γ | µ | ν | Ψ; f ′′(vti))→n′

(⟨p[f/f ′′], ft2 , transρ1(⟨ft1 , bt⟩)⟩ | γ2 | µ′ | Ψ′; T [ℓbh/ℓb′h], transρ1(ŝt1))→

(⟨p[f/f ′′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), transρ1(ŝt1))

First, consider the case where bt1 ∈ C(bh). Then, ℓb = ℓbh and bt2 ∈ C(b′h) by translation. In

the other case, the predicate firstiter(ρ2) remains true in the subsequent step of evaluation

as the backedge is not taken and bt2 = trans(⟨ft1 , bt1⟩).

Loop Body Next, we cover the cases where the n-th step of evaluation of f is within loop

l and the predicate firstiter(ρ) is false. If evaluation of f is not yet at a terminator, then this

case is trivial by application of Lemma 6.C.1. Now, consider when the (n+ 1)-th step of

evaluation of f evaluates a terminator (distinct from a clone of the latch). This terminator is

necessarily a switch as evaluation is currently within a loop. By our strengthened inductive

hypothesis, the n′-th step of evaluation of f ′′ stops at a state with a symmetric function,

block, terminator, and register context. Let T1 and T2 be the terminator in the evaluation of

254

functions f and f ′′, respectively. Here, T2 = T1[σL]. By application of Lemma 6.B.3, the re-

sulting blocks are either the same or mappable through σL. The blocks and their unmodified

streams are consistent with the strengthened induction. Additionally, the resulting register

contexts are extended with the same set of register-value pairs, which does not violate the

strengthened induction.

[Slot ← Refinement] We refine the translation of blocks and streams by collapsing all

blocks and block references that belong to the duplicated loop to the symmetric block (or

reference to the symmetric block) in the original loop. For brevity, we decompose the stream

st into (s′t, ŝt).

trans−1(⟨ft, bt⟩) =



latch(l)[−−→σft2] bt ∈ C(latchf ′′(l))

blockf (σ−1L (lab(bt))[−→σft] bt ∈ C(bodyf ′′(l′)

bt otherwise

trans−1(⟨ft, bt, (st, ŝt)⟩) =


(s′t, Tt[σ

−1
L]), trans−1(ŝt) bt ∈ C(bodyf ′′(l′) ∪ C(latchf ′′(l))

st, trans−1(ŝt) otherwise

We add the following additional relationship between register contexts.

γ2 = γ1

[Slot ← Invokability] It cannot be the case that bt2 ∈ C(bodyf ′′(l′)). If the entry block

of f ′′ is the latch of loop l, then bt1 = latchf (l)[
−−→σft2]. Otherwise, bt1 = bt2 . In either case,

the unmodified streams and register contexts are consistent with the strengthened induction

without an additional step of evaluation.

255

[Slot ← Asymmetric Evaluation] By the refined trans−1 relation, all temporarily di-

verging steps of evaluation occur at the terminator of a clone of latch(l) or within the body

of l′.

Original Latch First, we cover the case where the (n′ + 1)-th step of evaluation of f ′′

transfers control from block bt ∈ C(latch(l)). Let T = switch v cvi 7→ refi refd and let

ref = ℓb(ei) be the block reference taken by this step of evaluation.

(p[f/f ′′] | γ | µ | ν | Ψ; f ′′(vti))→n′

(⟨p[f/f ′′], ft2 , bt)⟩ | γ2 | µ′ | Ψ′; T [ℓbh/ℓb′h], trans−1(ŝt1))→

(⟨p[f/f ′′], ft2 , bt2⟩ | γ2[ri 7→ γ2(ei)] | µ′ | ν ′ | Ψ′; stream(bt2), ŝt2)

By our strengthened inductive hypothesis, the n-th step of evaluation of f stops in function

ft1 = trans−1(ft2) on a terminator that transfers control from block trans−1(⟨ft2 , bt⟩), as

shown below, such that γ1 and γ2 are consistent with the strengthened induction. The

(n + 1)-th step of evaluation of f proceeds by application of rule E-Switch by taking the

symmetric switch case.

(p | γ | µ | ν | Ψ; f(vti))→n

(⟨p, ft1 , trans−1(⟨ft1 , bt⟩⟩ | γ1 | µ′ | ν ′ | Ψ′; T, trans−1(ŝt2))→

(⟨p, ft1 , bt1⟩ | γ1[ri 7→ γ1(ei)] | µ′ | ν ′ | Ψ′; stream(bt1), trans−1(ŝt2))

First, consider the case where bt2 ∈ C(b′h). Then, ℓb = ℓb′h and bt2 ∈ C(bh) by translation.

Otherwise, bt1 ̸∈ C(bodyf ′′(l′)) and bt2 = bt1 .

Loop Body Next, we cover the cases where the n′-th step of evaluation of f ′′ is within

loop l′. If evaluation of f ′′ is not yet at a terminator, then this case is trivial by application

of Lemma 6.C.1. Now, consider when the (n′ + 1)-th step of evaluation of f ′′ evaluates a

256

terminator (distinct from a clone of the latch). This terminator is necessarily a switch as

evaluation is currently within a loop. By our strengthened inductive hypothesis, the n-th

step of evaluation of f stops at a state with a symmetric function, block, terminator, and

register context. Let T1 and T2 be the terminator in the evaluation of functions f and f ′′,

respectively. Here, T1 = T2[σ
−1
L]. By application of Lemma 6.B.3, the resulting blocks are

either the same or mappable through σ−1L . The blocks and their unmodified streams are

consistent with the strengthened induction. Additionally, the resulting register contexts are

extended with the same set of register-value pairs, which does not violate the strengthened

induction.

Theorem 9.G.2. Assume p | f is well-typed. If f can be evaluated n steps with some

register context, memory context, nondeterminism state, and effects list, then fout can be

evaluated for n′ steps with the same initial context and arguments and reach a state with

the same memory context, nondeterminism state, and a similar effects list (and vice versa).

Proof. By application of Lemma 9.G.1, Theorem 7.E.1, Theorem 7.F.1, and Theorem 7.A.1.

Corollary 9.G.3. The set of paths over block labels from ℓ0 to ℓb′ in Gf ′ for some block b′ ∈

B where lab(b′) = ℓb′ can be constructed by replacing each path p1∪⟨pi⟩ where p1 and pi are

the minimal subpaths of the forms ⟨lab(header(l)), . . . , lab(latch(l))⟩ and lab(header(l)), ⟨bi⟩

where all bi ∈ block(l), respectively, by the path p1[σL] ∪ ⟨pi⟩ in the set of such paths in Gf .

Theorem 9.G.4. If f is in canonical form, then fout is in canonical form.

Proof. If block bl contains a branch to an exit block of loop l, then bl would not be dedicated

to loop l′. In this circumstance, the preheader of loop l′ is rededicated. The exit set of loop

l′ contains blocks that are reachable from the blocks that originally belonged to l. Let lc

be a child of l and let l′c be the loop duplicated from lc. Distinct loops lc and l′c also share

257

the same set of exits and are necessarily undedicated. These are precisely the loops whose

exits are rededicated by the transformation. No other paths outside of loop l change by

Corollary 9.F.3.

Theorem 9.G.5. If f is in LCSSA form, then fout is in LCSSA form.

Proof. The application of rewrite uses effectively maps the set of registers defined by def(l)

to a set of fresh registers in l′. This is obvious as the reaching definition of each such use

is the unique definition of the used register. Then, the set of definitions introduced by loop

l′ are fresh registers, and each use is also contained within l′. When loop l is destroyed, all

definitions and uses are moved to the parent of l. As each use of a definition of l is also

contained in l, then each use of a definition in the parent of l is also contained in the parent

of l. Lastly, let lc be a child of l and let l′c be the loop duplicated from lc. The nearest

ancestor of lc and l′c in the resulting loop nesting forest is the parent of l, and each use in

l′c is then either defined by a parent loop, or is defined by a definition also duplicated from

lc.

Lemma 9.G.6. If p | f is well-typed and f is in SSA form, then p | f ′′ is well-typed.

Proof. Each block b ∈ bodyf (l) and its duplicates have the same set of register uses. By

Corollary 9.G.3, every block of l can reach every block of l′. Additionally, every block of l

and l′ can reach the same set of blocks outside of loops l and l′. The set of register uses

reachable from block b and the set of register uses reachable from one of its duplicates are

then equivalent. Further, each block b and its duplicates also define the same registers and

thus have the same implicit block parameters and nonlocal block parameters. The block

latch(l) is modified to point to the duplicated loop header. Both l and l′ have the same set

of block parameters, implicit block parameters, and stream. Clearly, each block b and its

duplicates have identical typing derivations.

258

Theorem 9.G.7. If p | f is well-typed and f is in SSA form, then p | fout is well-typed.

Proof. By application of 9.G.6, Theorem 7.E.4, Theorem 7.F.3, and Theorem 7.A.2.

Lemma 9.G.8. The unique dominator tree of Gf ′′ is D′′.

Proof. Block header(l′) is immediately dominated by latch(l) as it is its sole forward-edge

predecessor. All other blocks inserted by application of the duplicate procedure has the

correct immediate dominator, as there is no direct path to any block that does not first travel

through header(l′). Let b be a block that change immediate dominator. By Corollary 9.G.3,

this block must have been previously dominated by a block in l for which there is no an

additional path that instead passes through the additional blocks. These set of such violating

blocks are described completely by the set BD and each dominator is be calculated from the

nearest common ancestor in the old dominator tree as shown by Alstrup [8].

Theorem 9.G.9. The unique dominator tree of Gfout is Dout.

Proof. By application of 9.G.8, Theorem 7.E.5 and Theorem 7.F.4.

Lemma 9.G.10. If f is in canonical form, then Fout reconstructed from (H ′′, L′′, X ′′) is the

unique loop nesting forest of Gf ′′ .

Proof. Once the backedge of loop l is modified, each block in l no longer has a path back

to header(l) without first traveling through the preheader which, by definition, is not within

the loop body. Then, the original loop l is destroyed and all references to it in H ′′, L′′, and

X ′′ are removed. The children of l are not modified, but their placement in the loop nesting

hierarchy goes up one level – each child is still nested within the parent of l. As loop l′ has

the same exit blocks as loop l, it also shares a path to the latch of its parent and therefore

is also nested under the parent of l.

259

Theorem 9.G.11. If f is in canonical form, then Fout reconstructed from (Hout, Lout, Xout)

is the unique loop nesting forest of Gfout .

Proof. By application of 9.G.10, Theorem 7.E.6 and Theorem 7.F.5.

260

10 Evaluation

In this chapter we present evaluation results using a proof-of-concept implementation of an

optimizer using the algorithms discussed in this work. This implementation is written in

Scala and supports the following optimization passes:

1. Constant Propagation

2. Copy Propagation

3. Dead Code Elimination

4. If Simplify (IS)

5. Function Inline (FI)

6. Jump Simplify (JS)

7. Jump Thread (JT)

8. Straighten (S)

9. Loop Unroll (UNR)

10. Loop Unswitch (UNS)

The first three passes do not have an effect on control flow (dead code elimination is applied

over instructions, not blocks) and do not play a role in this evaluation. The remainder of this

chapter discusses the source programs used for the evaluation, the evaluation methodology,

and a discussion of the results.

10.1 Source Programs

The flow graphs of the Waddle IR used for this evaluation were generated from compiled

LLVM IR. The resulting flow graphs are (mostly) isomorphic in control flow to the LLVM

IR, but each instruction in the generated graph is chosen randomly. Exception flow, indirect

function calls, and unreachability, for which there are currently no direct representations in

the Waddle IR, were approximated as closely as possible. An instruction in a basic block of

261

the source IR and the generated instruction in the symmetric basic block of the generated

IR use the same register names.

The resulting generated graphs have the same control flow structure and live register

intervals of a real-world program. This provides programs expressed as valid Waddle IR

that have opportunities for jump, loop, and inline optimizations that would occur in real

programs. This is more than sufficient for this benchmark, as the exact semantics of the

program are inconsequential.

The six programs used to generate the LLVM IR are single-file C++11 implementations

of graph algorithms taken from the GAP Benchmark Suite [11], described below. These

sources were chosen because they utilize a wide variety of iterative structures that were

likely to make realistic yet interesting loop nesting forests. The original source (git commit

f166dc4) is available on Github1. Each compilation unit performs an operation over a graph

whose edges are stored as compressed sparse rows.

bc.cc

Calculate betweenness centrality scores for each vertex

bfs.cc

Perform a breadth-first traversal and create a mapping from a vertex to its predecessor

in the traversal order.

cc.cc

Label each vertex with an identifier of connected component to which it belongs.

pr.cc

Calculate PageRank scores for each vertex. This program terminates once the total

change is less than some (supplied) epsilon.
1https://github.com/sbeamer/gapbs

262

https://github.com/sbeamer/gapbs

sssp.cc

Calculate the shortest path distance from a source vertex to all other vertices.

tc.cc

Count the number of triangles (cliques of size 3) in an undirected graph where neighbor-

hoods are sorted by vertex labels.

To give a brief sense of the scale of the Waddle IR used here: each compilation unit

contains between 363 and 445 total function definitions, between 71 and 101 of which are

interesting (neither trivial, a single node, nor loop-less). There are between 2 and 237

blocks per function (with an average of 21 blocks per function) and between 2 and 354 edges

per function (with an average of 30 edge per function). Each interesting function contains

between 1 and 10 loops with depths ranging between 1 (top-level) and 4. The size of loop

body sets range between 1 and 99 blocks, and the size of loop exit sets range between 0

and 10 blocks. Many of the loops with empty exit sets come from Waddle’s equivalent of an

unreachable LLVM instruction, in which a single trivial block branches back to itself.

10.2 Methodology

We refer to an optimization pass as a unit of work over a single function that first detects

opportunities for optimizations, then builds a worklist, then applies a transformation to the

function for each value in the worklist. A single pass performs only one type of transfor-

mation, but may apply that transformation many times. For instance, an if simplification

pass may detect multiple branches targets of which are based on constant values. A single

pass would reduce all of these multiple-target switches into unconditional jumps. It may

also be the case that an item in the worklist is no longer a candidate for the transformation

at time the transformation is applied. In the example above, the deletion of an edge may

263

make an item not yet processed in the worklist unreachable. Such items are simply skipped

as the worklist is processed. There may also be a circumstance where performing a transfor-

mation uncovers a further opportunity for optimization that was not found when building

the original worklist. Running an optimization pass a second time will detect such missed

opportunities.

Optimization passes will also limit the resulting code size by following a handful of basic

heuristics. A function will not be inlined if it consists of more than 100 blocks. Similarly,

a loop will neither be unswitched nor unrolled if the body set consists of more than 100

blocks. Additionally, there may be at most 15 applications of loop unrolling and at most 3

applications of loop unswitching per pass. Finally, a branch with more than 8 successors is

never eligible for loop unswitching.

We present results in two parts. First, we compare a single optimization pass that

incrementally repairs canonical form against an alternative implementation that performs

the least amount of work during the transformation (not caring to repair dominator or loop

information) then rebuilds canonical form from scratch at the end of optimization. Both

versions of the passes maintain static single assignment, implicit block parameters, and set

of register uses. These properties are handled implicitly by Waddle’s IR API, so there is no

extra effort required for the ‘dumb’ versions of the transformation.

Second, we compare a sequence of optimization passes that incrementally repairs canoni-

cal form against a sequence of optimization passes that rebuild only the necessary properties

of the IR between passes, again performing the least amount of work necessary to effectively

perform the optimization. This is similar to how the pass manager in LLVM behaves and

gives a good preliminary idea of how this methodology performs against realistic workloads.

The if simplification, jump simplification, jump threading, and straightening passes require

264

domination information. This is used to build the worklist in a deterministic fashion (a post-

order walk over the dominator tree) so that the resulting functions between both versions are

the same. The function inliner requires loop information. As the maximum amount of work

for this pass is limited, the loop nesting structure is used in order to populate the worklist

with the inline opportunities that will have the most impact on the resulting function. As

folk wisdom tells us, the (likely) beneficial callsites to inline are located in the deepest loops.

These loops are likely to be evaluated more frequently and thus saves on stack manipulation

and function prologue/epilogue overhead. Loop unrolling requires loop information (unsur-

prisingly) to determine the size and cost of optimization opportunities as well as identify the

bodies which must be duplicated. Loop unswitching requires canonical form in addition to

basic loop information. Part of this optimization attempts to make uses of registers in loop

bodies invariant by hoisting instructions into the loop’s dedicated preheader. The latter two

passes are written so that the required properties are rebuilt between successful loop oper-

ations. This is required as subsequent application of a loop operation using stale data may

malform the IR or, even worse, change the semantics of the program under optimization.

Additionally, canonical form is rebuilt from scratch after all optimization passes have run

over a particular function. This is necessary as the target of inline operations are expected

to be in canonical form.

10.3 Single Pass

Here, we present the results for individual optimization passes. For each pass, the following

range of operations were performed: if simplification was performed between 1013 and 1242

times; function inlining was performed 207 to 256 times; jump simplification was performed

4 to 26 times; jump threading was performed 4 to 28 times; straightening was performed 255

265

IS FI JS JT S UNR UNS

0

−20

20

40

60

80

100

op
tim

iz
e

ru
nt

im
e

%
de

cr
ea

se

bc bfs cc pr sssp tc

Figure 10.31: Runtime Decrease comparisons between incremental maintenance of properties
and complete repair of properties for a single transformation pass application.

to 321 times; loop unrolling was performed 124 to 175 times; loop unswitching was performed

106 to 130 times.

For every optimization except for IS, the incremental strategy outperforms the strategy

that rebuilds structures at the end of the pass. This is likely due to the large number of

operations performed during this pass (a factor of four over the other passes). Due to the

way the program IR is generated, switch values that have no direct translation from LLVM

IR are replaced by a randomized constant. This creates a large number of optimization op-

portunities for jump simplification, which would not occur in practice for the same program.

If fewer opportunities were presented so that a smaller batch of work was performed per

pass, then the incremental approach would likely see an increased benefit with respect to

the recomputation approach.

Figure 10.31 combines the results of each program to show the percentage decrease in

runtime compared to the recomputation strategy. Here, a 50% decrease in runtime is the

same as running in half the time, and a -20% decrease in runtime is the same as taking an

additional 20%. The average over all benchmarks for each optimization pass are presented

266

as a circled cross. Again, the performance of the incremental IS pass does not compare

well against the dumb bulk repair strategy. Function inlining gives a modest decrease in

runtime. Straightening and loop optimizations perform solidly, giving between a 28% and a

43% decrease in runtime. Jump optimizations have the most striking decrease in runtime,

hovering around 60%. The same results by the program under optimization are given in

Figure 10.32. Strangely, bfs.ir did not find any opportunities for jump optimizations (and

was omitted from the above lists).

These results are encouraging, especially paired with a theory for the poor performance

of the IS optimization pass. As we will discuss in Chapter 11, validating this theory and

optimizing the performance of the incremental approach is a good candidate for future work.

10.4 Pass Sequence

Next, we present the results for a single, fixed sequence of optimizations. This sequence

applies the following transformation passes over each function one at a time: FI, JT, JS,

UNS, IS, S, UNS, UNR, S. Straightening is applied after unrolling and if simplification, as

these operations tend to create non-critical edges. If simplification is applied directly after

the first instance of loop unswitching,s as each cloned loop can immediately be reduced due

to the unconditional branch created in the loop body. This reduction can sometimes be

drastic. Figure 10.41 partitions runtime data by program. The programs bc.ir and cc.ir

show a solid reduction in optimization runtime. The remaining programs hover within 5%

of the original runtime, which is not a large enough jump to attribute any significant results

in either the positive or negative direction. Figure 10.42 additionally gives the number of

operations performed for each program for this optimization sequence.

By the nature of phase ordering, such constructed tests are very difficult to evaluate. Each

267

IS FI JS JT S UNR UNS
0

20

40

60

op
tim

iz
at

io
n

ru
nt

im
e

(m
s)

bc.ir

Repair
Recompute

IS FI JS JT S UNR UNS
0

20

40

60

bfs.ir

Repair
Recompute

IS FI JS JT S UNR UNS
0

20

40

60

op
tim

iz
e

ru
nt

im
e

(m
s)

cc.ir

Repair
Recompute

IS FI JS JT S UNR UNS
0

20

40

60

pr.ir

Repair
Recompute

IS FI JS JT S UNR UNS
0

20

40

60

op
tim

iz
e

ru
nt

im
e

(m
s)

sssp.ir

Repair
Recompute

IS FI JS JT S UNR UNS
0

20

40

60

tc.ir

Repair
Recompute

Figure 10.32: Runtime comparisons between incremental maintenance of properties and
complete repair of properties for a single transformation pass application.

268

Program Incremental Repair (ms) Rebuild (ms) Runtime % Decrease
bc.ir 2929 (±071) 3572 (±612) +18.00
bfs.ir 2215 (±079) 2210 (±045) −0.23
cc.ir 2652 (±023) 2960 (±131) +10.41
pr.ir 2384 (±066) 2407 (±067) +0.96

sssp.ir 2357 (±073) 2413 (±042) +2.32
tc.ir 2403 (±110) 2303 (±088) −4.34

Figure 10.41: Runtime results for a single, fixed sequence of optimizations.

bc.ir bfs.ir cc.ir pr.ir sssp.ir tc.ir
IS 2218 1903 2064 1923 1958 1838
FI 235 228 212 208 254 204
JS 10 0 8 6 6 6
JT 39 4 42 38 4 39
S 1640 1528 1404 1424 1439 1379

UNR 97 78 75 72 88 68
UNS 152 128 136 128 142 122

Figure 10.42: Number of operations performed during optimization.

program will react radically differently to distinct orders of optimizations. This evaluation

gives only a single order, chosen arbitrarily with respect to performance. Other programs

with different branching and register live range structures, other orders of optimization

passes, and different values for opportunity heuristics may produce radically different results,

affecting both the optimized program as well as the runtime required to produce it.

The combined results for this particular optimization pass, while not outstanding, is a

necessary sanity check to ensure that the performance of incremental repair is not detrimental

to the runtime of an optimizer. As this proof of concept implementation has moderately

exceeded its baseline, it is now worth the effort to explore the future directions of such

incremental methodologies, further discussed in Chapter 11.

269

11 Future Directions

In this chapter we briefly present ideas of how this research can be applied and extended in

the future.

Evaluation We have shown that the incremental approach to maintaining canonical form

is correct and have also shown that each individual pass is performant. The multiple-pass

evaluation presented here shows that the incremental approach does not backstep with re-

spect to performance, but shows this only for a very specific, very small sequence of opti-

mizations. This is partly because the proof of concept implementation only has a complete

implementation for the optimization passes described here. Future work should further

evaluate the incremental approach in the context of multiple passes with differing order of

phases.

In a blog post by John Regehr [55], the complete optimization of the following function

by Clang/LLVM 6.0.1 is illustrated.

bool is_sorted(int *a, int n) {

for (int i = 0; i < n - 1; i++) {

if (a[i] > a[i + 1]) return false;

}

return true;

}

Towards the end of optimization, he shows that things get a tiny bit weird, and application

of jump threading, CFG simplification, and some other unnamed passes keep flipping the IR

between the exact same canonicalized and uncanonicalized versions seven times. Reinserting

and subsequently threading the same dedicated exit wastes only compilation time and has no

benefit on the ultimate output of the program. And this behavior occurs on a simple function

270

with a single simple loop. It is not hard to imagine that such waste increases with program

size and complexity. This is exactly the behavior an incremental approach to optimization

attempts to solve.

The list of transformations applied by LLVM 7.0.0 is given in Figure 11.01. This list

contains nearly 300 optimization passes applied to every function of a program, 51 of which

are passes dedicated to restoring some property of the IR for a future pass (highlighted in

red). In future evaluations targeting multiple passes, this sequence of optimizations should

be used as the baseline. This will provide a very common real-world phase order, and any

decrease in optimization runtime would hint at a true savings for countless workloads.

Application Going further, it would be worth the experimental effort to modify trans-

formation passes of LLVM itself in order to add preservation of LCSSA form, dominators,

loops, loop-simplify to the passes described here. If this were to be done in such a way that

entire repair passes were no longer necessary after a given transformation, this could be a

big win. This was not attempted in the span of this work as LLVM is an absolute beast. The

Waddle IR was designed as a simplified version of the LLVM IR, and therefore missing some

features. These features would need to be carefully considered in order to build a correct

incremental version of LLVM passes (e.g. landing pads for exception flow, stack and heap

allocation, and arrays and object shapes).

Phaseless Optimizers The problem of ordering optimization phases is a well-studied one

without a clear solution [5, 40–44, 63, 64]. Matthieu Queva [52] developed a compiler frame-

work in 2007 that, instead of relying on a phase order that is fixed for all input programs,

uses dataflow analysis as a heuristic for what phase to apply next to a given function or

program. The idea is to greedily find the phase order for a particular program that will

work better than any fixed phase order that was chosen orthogonally to the contents and

271

ta
rg

et
lib

in
fo

ta
rg

et
lib

in
fo

lib
ca

lls
-s

hr
in

kw
ra

p
m

em
de

p
ba

si
cc

g
de

m
an

de
d-

bi
ts

tt
i

tt
i

lo
op

s
la

zy
-b

ra
nc

h-
pr

ob
rp

o-
fu

nc
tio

na
tt

rs
la

zy
-b

ra
nc

h-
pr

ob
tb

aa
tb

aa
br

an
ch

-p
ro

b
la

zy
-b

lo
ck

-fr
eq

gl
ob

al
op

t
la

zy
-b

lo
ck

-fr
eq

sc
op

ed
-n

oa
lia

s
sc

op
ed

-n
oa

lia
s

bl
oc

k-
fr

eq
op

t-
re

m
ar

k-
em

itt
er

gl
ob

al
dc

e
op

t-
re

m
ar

k-
em

itt
er

as
su

m
pt

io
n-

ca
ch

e-
tr

ac
ke

r
as

su
m

pt
io

n-
ca

ch
e-

tr
ac

ke
r

la
zy

-b
ra

nc
h-

pr
ob

gv
n

ba
si

cc
g

sl
p-

ve
ct

or
iz

er
pr

ofi
le

-s
um

m
ar

y-
in

fo
pr

ofi
le

-s
um

m
ar

y-
in

fo
la

zy
-b

lo
ck

-fr
eq

ph
i-v

al
ue

s
gl

ob
al

s-
aa

op
t-

re
m

ar
k-

em
itt

er
fo

rc
ea

tt
rs

fo
rc

ea
tt

rs
op

t-
re

m
ar

k-
em

itt
er

ba
si

ca
a

flo
at

2i
nt

in
st

co
m

bi
ne

in
fe

ra
tt

rs
in

fe
ra

tt
rs

pg
o-

m
em

op
-o

pt
aa

do
m

tr
ee

lo
op

-s
im

pl
ify

ip
sc

cp
ip

sc
cp

ba
si

ca
a

m
em

de
p

lo
op

s
lc

ss
a-

ve
ri

fic
at

io
n

ca
lle

d-
va

lu
e-

pr
op

ag
at

io
n

ca
lle

d-
va

lu
e-

pr
op

ag
at

io
n

aa
m

em
cp

yo
pt

lo
op

-s
im

pl
ify

lc
ss

a
gl

ob
al

op
t

gl
ob

al
op

t
lo

op
s

sc
cp

lc
ss

a-
ve

ri
fic

at
io

n
sc

al
ar

-e
vo

lu
tio

n
do

m
tr

ee
do

m
tr

ee
la

zy
-b

ra
nc

h-
pr

ob
de

m
an

de
d-

bi
ts

lc
ss

a
lo

op
-u

nr
ol

l
m

em
2r

eg
m

em
2r

eg
la

zy
-b

lo
ck

-fr
eq

bd
ce

ba
si

ca
a

la
zy

-b
ra

nc
h-

pr
ob

de
ad

ar
ge

lim
de

ad
ar

ge
lim

op
t-

re
m

ar
k-

em
itt

er
ba

si
ca

a
aa

la
zy

-b
lo

ck
-fr

eq
do

m
tr

ee
do

m
tr

ee
ta

ilc
al

le
lim

aa
sc

al
ar

-e
vo

lu
tio

n
op

t-
re

m
ar

k-
em

itt
er

ba
si

ca
a

ba
si

ca
a

si
m

pl
ify

cf
g

lo
op

s
lo

op
-r

ot
at

e
in

st
co

m
bi

ne
aa

aa
re

as
so

ci
at

e
la

zy
-b

ra
nc

h-
pr

ob
lo

op
-a

cc
es

se
s

lo
op

-s
im

pl
ify

lo
op

s
lo

op
s

do
m

tr
ee

la
zy

-b
lo

ck
-fr

eq
la

zy
-b

ra
nc

h-
pr

ob
lc

ss
a-

ve
ri

fic
at

io
n

la
zy

-b
ra

nc
h-

pr
ob

la
zy

-b
ra

nc
h-

pr
ob

lo
op

s
op

t-
re

m
ar

k-
em

itt
er

la
zy

-b
lo

ck
-fr

eq
lc

ss
a

la
zy

-b
lo

ck
-fr

eq
la

zy
-b

lo
ck

-fr
eq

lo
op

-s
im

pl
ify

in
st

co
m

bi
ne

op
t-

re
m

ar
k-

em
itt

er
sc

al
ar

-e
vo

lu
tio

n
op

t-
re

m
ar

k-
em

itt
er

op
t-

re
m

ar
k-

em
itt

er
lc

ss
a-

ve
ri

fic
at

io
n

la
zy

-v
al

ue
-in

fo
lo

op
-d

is
tr

ib
ut

e
lic

m
in

st
co

m
bi

ne
in

st
co

m
bi

ne
lc

ss
a

ju
m

p-
th

re
ad

in
g

br
an

ch
-p

ro
b

al
ig

nm
en

t-
fr

om
-a

ss
um

pt
io

ns
si

m
pl

ify
cf

g
si

m
pl

ify
cf

g
ba

si
ca

a
co

rr
el

at
ed

-p
ro

pa
ga

tio
n

bl
oc

k-
fr

eq
st

ri
p-

de
ad

-p
ro

to
ty

pe
s

ba
si

cc
g

ba
si

cc
g

aa
ba

si
ca

a
sc

al
ar

-e
vo

lu
tio

n
gl

ob
al

dc
e

gl
ob

al
s-

aa
gl

ob
al

s-
aa

sc
al

ar
-e

vo
lu

tio
n

aa
ba

si
ca

a
co

ns
tm

er
ge

pr
un

e-
eh

pr
un

e-
eh

lo
op

-r
ot

at
e

ph
i-v

al
ue

s
aa

do
m

tr
ee

in
lin

e
in

lin
e

lic
m

m
em

de
p

lo
op

-a
cc

es
se

s
lo

op
s

fu
nc

tio
na

tt
rs

fu
nc

tio
na

tt
rs

lo
op

-u
ns

w
itc

h
ds

e
de

m
an

de
d-

bi
ts

br
an

ch
-p

ro
b

do
m

tr
ee

do
m

tr
ee

si
m

pl
ify

cf
g

lo
op

s
la

zy
-b

ra
nc

h-
pr

ob
bl

oc
k-

fr
eq

sr
oa

sr
oa

do
m

tr
ee

lo
op

-s
im

pl
ify

la
zy

-b
lo

ck
-fr

eq
lo

op
-s

im
pl

ify
ba

si
ca

a
ba

si
ca

a
ba

si
ca

a
lc

ss
a-

ve
ri

fic
at

io
n

op
t-

re
m

ar
k-

em
itt

er
lc

ss
a-

ve
ri

fic
at

io
n

aa
aa

aa
lc

ss
a

lo
op

-v
ec

to
ri

ze
lc

ss
a

m
em

or
ys

sa
m

em
or

ys
sa

lo
op

s
ba

si
ca

a
lo

op
-s

im
pl

ify
ba

si
ca

a
ea

rl
y-

cs
e-

m
em

ss
a

ea
rl

y-
cs

e-
m

em
ss

a
la

zy
-b

ra
nc

h-
pr

ob
aa

sc
al

ar
-e

vo
lu

tio
n

aa
sp

ec
ul

at
iv

e-
ex

ec
ut

io
n

sp
ec

ul
at

iv
e-

ex
ec

ut
io

n
la

zy
-b

lo
ck

-fr
eq

sc
al

ar
-e

vo
lu

tio
n

aa
sc

al
ar

-e
vo

lu
tio

n
ba

si
ca

a
ba

si
ca

a
op

t-
re

m
ar

k-
em

itt
er

lic
m

lo
op

-a
cc

es
se

s
br

an
ch

-p
ro

b
aa

aa
in

st
co

m
bi

ne
po

st
do

m
tr

ee
lo

op
-lo

ad
-e

lim
bl

oc
k-

fr
eq

la
zy

-v
al

ue
-in

fo
la

zy
-v

al
ue

-in
fo

lo
op

-s
im

pl
ify

ad
ce

ba
si

ca
a

lo
op

-s
in

k
ju

m
p-

th
re

ad
in

g
ju

m
p-

th
re

ad
in

g
lc

ss
a-

ve
ri

fic
at

io
n

si
m

pl
ify

cf
g

aa
la

zy
-b

ra
nc

h-
pr

ob
co

rr
el

at
ed

-p
ro

pa
ga

tio
n

co
rr

el
at

ed
-p

ro
pa

ga
tio

n
lc

ss
a

do
m

tr
ee

la
zy

-b
ra

nc
h-

pr
ob

la
zy

-b
lo

ck
-fr

eq
si

m
pl

ify
cf

g
si

m
pl

ify
cf

g
sc

al
ar

-e
vo

lu
tio

n
ba

si
ca

a
la

zy
-b

lo
ck

-fr
eq

op
t-

re
m

ar
k-

em
itt

er
do

m
tr

ee
do

m
tr

ee
in

dv
ar

s
aa

op
t-

re
m

ar
k-

em
itt

er
in

st
si

m
pl

ify
ba

si
ca

a
ba

si
ca

a
lo

op
-id

io
m

lo
op

s
in

st
co

m
bi

ne
di

v-
re

m
-p

ai
rs

aa
aa

lo
op

-d
el

et
io

n
la

zy
-b

ra
nc

h-
pr

ob
si

m
pl

ify
cf

g
si

m
pl

ify
cf

g
lo

op
s

lo
op

s
lo

op
-u

nr
ol

l
la

zy
-b

lo
ck

-fr
eq

do
m

tr
ee

ve
ri

fy
la

zy
-b

ra
nc

h-
pr

ob
la

zy
-b

ra
nc

h-
pr

ob
m

ld
st

-m
ot

io
n

op
t-

re
m

ar
k-

em
itt

er
lo

op
s

la
zy

-b
lo

ck
-fr

eq
la

zy
-b

lo
ck

-fr
eq

ph
i-v

al
ue

s
in

st
co

m
bi

ne
sc

al
ar

-e
vo

lu
tio

n
op

t-
re

m
ar

k-
em

itt
er

op
t-

re
m

ar
k-

em
itt

er
ba

si
ca

a
ba

rr
ie

r
ba

si
ca

a
in

st
co

m
bi

ne
in

st
co

m
bi

ne
aa

el
im

-a
va

il-
ex

te
rn

aa

Figure 11.01: The standard sequence of LLVM 7.0.0 -O2 passes (read by columns).

272

properties of the program.

Waddle is a solid first step in moving towards such an idea. If Waddle can be extended

to preserve or repair a certain class of analysis results as well (e.g. loop trip count, branch

probabilities, alias analysis, possible register value ranges), even approximately, then the

heuristics described by this framework could be applied to choose the next optimization

pass to perform dynamically.

This idea can be taken even further and can provide a very granular solution to the phase

order problem. Instead of structuring an optimizer into passes that must first determine

where in the program they are applicable (e.g. searching the program for loops containing

an invariant switch value, comparing target function sizes against a max inline size), it can

be structured as a single generic pass. This generic pass chooses the next optimization from

a global priority list of transformations that have been found applicable, along with a score.

This score is a heuristically chosen value that denotes the impact of the transformation on

the function and takes into account things like code size, trip counts, reduction in number

of instructions or branches, and how deep in a loop the transformation occurs. During

each transformation, transformation listeners look at the changed parts of the graph and

determine if there are new opportunities that can be added to the queue. This pass would

eventually halt once the queue is empty, the maximum score of the queue is lower than some

threshold, or a time limit is reached.

The methodology used to construct Waddle would also be key to implementing such

an architecture. If each operation cannot guarantee that the internal representation is in

canonical form, then each listener would need to re-canonicalize the program (inserting a

canonicalization step in between every transformation - not pass) or risk failing to recognize

a subsequent optimization opportunity.

273

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On finding lowest common ancestors in
trees. In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing,
STOC ’73, pages 253–265, New York, NY, USA, 1973. ACM.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[3] F. E. Allen and J. Cocke. Graph theoretic constructs for program control flow analysis.
Technical Report IBM Res. Rep. RC 3923, IBM T.J. Watson Research Center, 1972.

[4] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages 1–19.
ACM, 1970.

[5] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W. Reeves,
Devika Subramanian, Linda Torczon, and Todd Waterman. Finding effective compila-
tion sequences. In Proceedings of the 2004 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, LCTES ’04, pages 231–239,
New York, NY, USA, 2004. ACM.

[6] Bowen Alpern, Roger Hoover, Barry K Rosen, Peter F Sweeney, and F Kenneth Zadeck.
Incremental evaluation of computational circuits. In Proceedings of the first annual
ACM-SIAM symposium on Discrete algorithms, pages 32–42. Society for Industrial and
Applied Mathematics, 1990.

[7] Bowen Alpern, Mark N Wegman, and F Kenneth Zadeck. Detecting equality of vari-
ables in programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 1–11. ACM, 1988.

[8] Stephen Alstrup, Dov Harel, Peter W Lauridsen, and Mikkel Thorup. Dominators in
linear time. SIAM Journal on Computing, 28(6):2117–2132, 1999.

274

[9] Stephen Alstrup and Peter W. Lauridsen. A simple and optimal algorithm for finding
immediate dominators in reducible graphs, 1996.

[10] C Scott Ananian. The static single information form. PhD thesis, Massachusetts
Institute of Technology, 1999.

[11] S. Beamer, K. Asanović, and D. Patterson. The GAP Benchmark Suite. ArXiv e-prints,
August 2015.

[12] Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Christoph Mallon,
and Andreas Zwinkau. Simple and efficient construction of static single assignment form.
In Compiler Construction, pages 102–122. Springer, 2013.

[13] Preston Briggs, Keith D Cooper, Timothy J Harvey, L Taylor Simpson, et al. Practical
improvements to the construction and destruction of static single assignment form.
Software-Practice and experience, 28(8):859–882, 1998.

[14] Adam L Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R Westbrook. Linear-time
pointer-machine algorithms for least common ancestors, mst verification, and domina-
tors.

[15] Adam L Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R Westbrook. A new,
simpler linear-time dominators algorithm. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 20(6):1265–1296, 1998.

[16] Adam L Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R Westbrook. Cor-
rigendum: a new, simpler linear-time dominators algorithm. ACM Transactions on
Programming Languages and Systems (TOPLAS), 27(3):383–387, 2005.

[17] M. D. Carroll and B. G. Ryder. Incremental data flow analysis via dominator and
attribute update. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’88, pages 274–284, New York, NY, USA,
1988. ACM.

[18] Larry Carter, Jeanne Ferrante, and Clark Thomborson. Folklore confirmed: reducible
flow graphs are exponentially larger. In ACM SIGPLAN Notices, volume 38, pages
106–114. ACM, 2003.

275

[19] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction of sparse
data flow evaluation graphs. In Proceedings of the 18th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’91, pages 55–66, New York,
NY, USA, 1991. ACM.

[20] Fred Chow, Sun Chan, Shin Liu, Raymond Lo, and Mark Streich. Effective representa-
tion of aliases and indirect memory operations in ssa form. In Compiler Construction,
pages 253–267. Springer, 1996.

[21] Richard Cole and Ramesh Hariharan. Dynamic lca queries on trees. In Proceedings
of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’99, pages
235–244, Philadelphia, PA, USA, 1999. Society for Industrial and Applied Mathematics.

[22] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. A simple, fast dominance
algorithm. Software Practice & Experience, 4:1–10, 2001.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[24] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control dependence
graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October 1991.

[25] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. J. Comput. Syst. Sci., 48(3):533–551, June 1994.

[26] Harold N Gabow. Data structures for weighted matching and nearest common ancestors
with linking.

[27] Loukas Georgiadis. Linear-time algorithms for dominators and related problems. 2005.

[28] Loukas Georgiadis, Giuseppe F Italiano, Luigi Laura, and Federico Santaroni. An
experimental study of dynamic dominators. In Algorithms–ESA 2012, pages 491–502.
Springer, 2012.

[29] Loukas Georgiadis and Robert E Tarjan. Finding dominators revisited. In Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 869–878.
Society for Industrial and Applied Mathematics, 2004.

276

[30] Loukas Georgiadis, Renato F Werneck, Robert E Tarjan, Spyridon Triantafyllis, and
David I August. Finding dominators in practice. In Algorithms–ESA 2004, pages 677–
688. Springer, 2004.

[31] Joe Groff and Chris Lattner. Swift intermediate language: A high level ir to complement
llvm. https://llvm.org/devmtg/2015-10/slides/GroffLattner-SILHighLevelIR.
pdf, 2015.

[32] Sebastian Hack. Interference graphs of programs in SSA-form. Citeseer.

[33] D Harel. A linear algorithm for finding dominators in flow graphs and related problems.
In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing,
STOC ’85, pages 185–194, New York, NY, USA, 1985. ACM.

[34] Paul Havlak. Nesting of reducible and irreducible loops. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 19(4):557–567, 1997.

[35] Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier Science Inc., New
York, NY, USA, 1977.

[36] Johan Janssen and Henk Corporaal. Making graphs reducible with controlled node
splitting. ACM Trans. Program. Lang. Syst., 19(6):1031–1052, November 1997.

[37] John B Kam and Jeffrey D Ullman. Global data flow analysis and iterative algorithms.
Journal of the ACM (JACM), 23(1):158–171, 1976.

[38] Kathleen Knobe and Vivek Sarkar. Array ssa form and its use in parallelization. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’98, pages 107–120, New York, NY, USA, 1998. ACM.

[39] Donald E Knuth. An empirical study of fortran programs. Software: Practice and
Experience, 1(2):105–133, 1971.

[40] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David Whalley,
Jack Davidson, Mark Bailey, Yunheung Paek, and Kyle Gallivan. Finding effective
optimization phase sequences. SIGPLAN Not., 38(7):12–23, June 2003.

[41] Prasad A Kulkarni, Stephen R Hines, David B Whalley, Jason D Hiser, Jack W David-
son, and Douglas L Jones. Fast and efficient searches for effective optimization-phase se-
quences. ACM Transactions on Architecture and Code Optimization (TACO), 2(2):165–
198, 2005.

277

https://llvm.org/devmtg/2015-10/slides/GroffLattner-SILHighLevelIR.pdf
https://llvm.org/devmtg/2015-10/slides/GroffLattner-SILHighLevelIR.pdf

[42] Prasad A Kulkarni, David Whalley, and Gary Tyson. Evaluating heuristic optimization
phase order search algorithms. In Code Generation and Optimization, 2007. CGO’07.
International Symposium on, pages 157–169. IEEE, 2007.

[43] Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson, and Jack W. Davidson. Ex-
haustive optimization phase order space exploration. In Proceedings of the International
Symposium on Code Generation and Optimization, CGO ’06, pages 306–318, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[44] Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson, and Jack W. Davidson. In search
of near-optimal optimization phase orderings. SIGPLAN Not., 41(7):83–92, June 2006.

[45] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in
a flowgraph. ACM Transactions on Programming Languages and Systems (TOPLAS),
1(1):121–141, 1979.

[46] Niko Matsakiss. Rust pull request #1211. https://github.com/rust-lang/rfcs/
blob/master/text/1211-mir.md, 2015.

[47] Steven S. Muchnick. Advanced compiler design implementation. Morgan Kaufmann,
1997.

[48] Nikos Parotsidis and Loukas Georgiadis. Dominators in directed graphs: a survey of
recent results, applications, and open problems. 2013.

[49] Konstantinos Patakakis, Loukas Georgiadis, and Vasileios A Tatsis. Dynamic domina-
tors in practice. In 2011 Panhellenic Conference on Informatics, pages 100–104. IEEE,
2011.

[50] Fernando Magno Quintao Pereira and Jens Palsberg. Ssa elimination after register allo-
cation. In International Conference on Compiler Construction, pages 158–173. Springer,
2009.

[51] Paul W. Purdom, Jr. and Edward F. Moore. Immediate predominators in a directed
graph [h]. Commun. ACM, 15(8):777–778, August 1972.

[52] Matthieu Stéphane Benoit Queva. Phase-ordering in optimizing compilers. PhD thesis,
Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark, 2007.

278

https://github.com/rust-lang/rfcs/blob/master/text/1211-mir.md
https://github.com/rust-lang/rfcs/blob/master/text/1211-mir.md

[53] G Ramalingam and Thomas Reps. An incremental algorithm for maintaining the domi-
nator tree of a reducible flowgraph. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of programming languages, pages 287–296. ACM, 1994.

[54] Ganesan Ramalingam. Identifying loops in almost linear time. ACM Transactions on
Programming Languages and Systems (TOPLAS), 21(2):175–188, 1999.

[55] John Regehr. How llvm optimizes a function. https://blog.regehr.org/archives/
1603, 2018.

[56] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. Global value numbers
and redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 12–27. ACM, 1988.

[57] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. An efficient incremen-
tal algorithm for maintaining dominator trees and its application to ϕ-nodes update.
ACAPS Technical Memo 77, 1994.

[58] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Incremental computation
of dominator trees. In Papers from the 1995 ACM SIGPLAN Workshop on Intermediate
Representations, IR ’95, pages 1–12, New York, NY, USA, 1995. ACM.

[59] Vugranam C Sreedhar, Guang R Gao, and Yong-Fong Lee. Identifying loops using
DJ graphs. ACM Transactions on Programming Languages and Systems (TOPLAS),
18(6):649–658, 1996.

[60] Bjarne Steensgaard. Sequentializing program dependence graphs for irreducible pro-
grams. 1993.

[61] Arthur Stoutchinin and Francois De Ferriere. Efficient static single assignment form
for predication. In Microarchitecture, 2001. MICRO-34. Proceedings. 34th ACM/IEEE
International Symposium on, pages 172–181. IEEE, 2001.

[62] Robert Tarjan. Testing flow graph reducibility. In Proceedings of the fifth annual ACM
symposium on Theory of computing, pages 96–107. ACM, 1973.

[63] Sid-Ahmed-Ali Touati and Denis Barthou. On the decidability of phase ordering prob-
lem in optimizing compilation. In Proceedings of the 3rd Conference on Computing
Frontiers, CF ’06, pages 147–156, New York, NY, USA, 2006. ACM.

279

https://blog.regehr.org/archives/1603
https://blog.regehr.org/archives/1603

[64] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I. August.
Compiler optimization-space exploration. In Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-directed and Runtime Optimization,
CGO ’03, pages 204–215, Washington, DC, USA, 2003. IEEE Computer Society.

[65] Sebastian Unger and Frank Mueller. Handling irreducible loops: Optimized node splitting
vs. DJ-graphs. Springer, 2001.

[66] Andrew K Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and computation, 115(1):38–94, 1994.

[67] Jianzhou Zhao. Formalizing the SSA-based Compiler for Verified Advanced Program
Transformations. PhD thesis, University of Pennsylvania, 2013.

[68] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. For-
malizing the llvm intermediate representation for verified program transformations. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’12, pages 427–440, New York, NY, USA, 2012. ACM.

280

CURRICULUM VITAE

Eric Fritz

Education
2018 - Ph.D. in Engineering, University of Wisconsin - Milwaukee.
Dissertation: Waddle – Always-Canonical Intermediate Representation
Supervised by Dr. John Boyland

2013 - M.S. in Computer Science, University of Wisconsin - Milwaukee.
Capstone: Optimizing the RedPrairie Distance Cache
Supervised by Dr. Christine Cheng

2011 - B.F.A. in Film, University of Wisconsin - Milwaukee.

Publications
2018 - Eric Fritz. Maintaining Canonical Form After Edge Deletion. Presented at
ICOOOLPS 2018 (co-located with ECOOP 2018).

2017 - Eric Fritz and Tian Zhao. Typing and Semantics of Asynchronous Arrows
in JavaScript. Science of Computer Programming; Volume 141 Issue C, 2017.

2016 - Eric Fritz, Jose Antony, and Tian Zhao. Arrows in Commercial Web Ap-
plications. Presented at HotWeb 2016.

2015 - Eric Fritz and Tian Zhao. Type Inference of Asynchronous Arrows in JavaScript.
Presented at REBLS 2015 (co-located with SPLASH 2015).

281

	Abstract
	List of Figures
	Introduction
	Motivation
	Research Contributions
	Organization

	Preliminaries
	Sequences
	Multisets
	Labels
	Control Flow Graph
	Reducibility
	Induced Trees
	Depth-First Spanning Tree

	Domination
	Dominator Tree

	Loops
	Loop Nesting
	Loop Nesting Forest
	Loop Deconstruction
	Identification of Reducible Loops
	Identification of Irreducible Loops

	Internal Representation
	Syntax
	Blocks, Functions, and Programs
	Values and Expressions
	Block Components
	Block Parameters and Implicit Parameters
	Instructions
	Terminators

	Semantics
	Function Cloning
	Environments
	Evaluation

	Type System

	Proof Appendix
	Soundness

	Properties
	Static Single Assignment Form
	Loop-Closed Static Single Assignment Form
	Canonical Form

	Related Work
	Dominator Tree Construction
	Iterative Algorithms
	Lengauer-Tarjan Algorithm
	Semi-NCA
	Linear Time Algorithms

	Dominator Tree Reconstruction
	Ramalingam-Reps Algorithm
	Dynamic SNCA Algorithm
	Depth-Based Heuristic

	SSA Construction
	SSA Reconstruction

	Transformations
	Notation
	Theorems
	Symmetric Evaluation
	Structural Theorems

	Proof Appendix
	Proof Template for Maintenance of Evaluation
	Symmetric Evaluation
	Symmetric Instructions
	Symmetric Function Calls
	Symmetric Branch
	Symmetric Return

	Common Lemmas

	Canonicalization
	SSA Reconstruction
	LCSSA Reconstruction
	Edge Set Splitting
	Repairing Violations
	Property 4.3.1 – Unique latch
	Property 4.3.2 – Dedicated preheader
	Property 4.3.3 – Dedicated exits

	Proof Appendix
	SSA Reconstruction
	LCSSA Reconstruction
	Edge Set Splitting
	Unique Latch
	Dedicated Preheader
	Dedicated Exits

	Operations
	Block Ejection
	Edge Deletion
	Change in Path Multiplicity
	Change in Paths

	Loop Duplication

	Proof Appendix
	Block Ejection
	Delete Edge

	Optimizations
	Straightening
	If Simplification
	Jump Simplification
	Function Inlining
	Loop Unswitching
	Loop Unrolling
	Loop Peeling

	Proof Appendix
	Straightening
	If Simplification
	Jump Simplification
	Function Inlining
	Loop Unswitching
	Loop Unrolling
	Loop Peeling

	Evaluation
	Source Programs
	Methodology
	Single Pass
	Pass Sequence

	Future Directions
	Bibliography
	Curriculum Vitae

