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Standard Compiler Architecture

Frontend: lex, parse, name resolution, typechecking
Middle-end: high-level symbolic optimization
Backend: machine-level optimization, register assignment, synthesis



Waddle’s IR: Euclid’s Algorithm
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Waddle’s IR: Euclid’s Algorithm

a(r: int, ra: int) c()

(switen r2 (0 c()) b() }——{revurn |

r3 < mod(ry, r2)

branch a(rz, r3) a(r: int, ra: int)
(switen 12 (0 () b0) |

) /

r3 <—mod(ri, r2) )

1y — addr(ged)
rs < call(rg, ra, r3)

return r5



Non-Incremental Architecture: Pass Manager

For each optimization o (in a fixed order) and for each function f:
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Non-Incremental Architecture: Pass Manager

For each optimization o (in a fixed order) and for each function f:

Recalculate all dirty structures/properties of f required by o

Execute o over f

Mark all structures/properties of f dirty unless explicitly preserved by o

loop-simplify m loop-simplify

domtree

L

— IRy

loop-simplify
A,

domtree

Lo

4



Waddle’s Architecture: Always-Canonical

For each optimization oc (in a fixed order) and for each function f:



Waddle’s Architecture: Always-Canonical

For each optimization oc (in a fixed order) and for each function f:
Execute oc over f



Waddle’s Architecture: Always-Canonical

For each optimization oc (in a fixed order) and for each function f:
Execute oc over f

(oc is written to incrementally maintain common structures/properties)



Dream Architecture: Phaseless

For each function f:
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Dream Architecture: Phaseless

For each function f:
Build worklist of optimization opportunities by benefit

While most beneficial optimization o is above threshold,
Dequeue and execute o

As o modifies the program,
new opportunities are scored and enqueued
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Dominator Tree
encodes which blocks occur on all paths to another block



What Does Waddle Maintain? (1)

Dominator Tree
encodes which blocks occur on all paths to another block

T
hy

®




What Does Waddle Maintain? (2)

Loop Nesting Forest
encodes loop body sets - loop exit sets - loop nesting structure
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What Does Waddle Maintain? (3)

SSA Form
all names defined once

/O\
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[branch j(xl)] [branch j(xz)]
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What Does Waddle Maintain? (4)

LCSSA Form
all uses of name occur within defining loop
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LCSSA Form
all uses of name occur within defining loop




What Does Waddle Maintain? (5)

‘Canonical’ Properties
Equivalent to LLVM's Loop Simplify Form
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What Does Waddle Maintain? (5)

‘Canonical’ Properties
Equivalent to LLVM's Loop Simplify Form

Every natural loop must have:

a dedicated preheader, dedicated exits, and a unique latch
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Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting
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Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

(o)
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Canonical Properties

Dedicated Exit Blocks
enables easy + efficient effect sinking
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Canonical Properties

Dedicated Exit Blocks
enables easy + efficient effect sinking
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Canonical Properties

Unique Backedge + Latch
makes destruction of loop unambiguous
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Canonical Properties

Unique Backedge + Latch
makes destruction of loop unambiguous
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Graph Modifications




Observations
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Observations

Edge can be deleted arbitrarily
Edge deletion affects a bounded subgraph
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Observations

Edge can be deleted arbitrarily
Edge deletion affects a bounded subgraph

Edges cannot be added arbitrarily
Single-entry subgraphs can instead be duplicated
Preserves domination, loop structure, SSA and LCSSA properties
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Edge Deletion

Edge Deletion: Simple Example
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Edge Deletion: (j, h)

Initial graph 16



Edge Deletion: (j, h)

Edge deleted

exits:

exits:

{1}

exits:

{k 1}
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Edge Deletion: (j, h)

Eject block j from inner (blue) loop

exits:

exits:

{1}

exits:
sk, 1}
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Edge Deletion: (j, h)

Eject block 7 from inner (blue) loop

exits:

exits:

{1}

exits:

{i}

16



Edge Deletion: (j, h)

Eject block j from middle (red) loop

exits:

exits:

.1

exits:

{i}
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Edge Deletion: (j, h)

Place block €, on edge (7, /) to dedicate exit

exits:

exits:

{j,E/}

exits:

{i}
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Edge Deletion

Edge Deletion: Chaos Example
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Edge Deletion: (f,/)

Initial graph 18



Edge Deletion: (f,/)

Edge deleted

exits:

exits:

{1}

exits:

{k 1}
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Edge Deletion: (f,/)
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Remove destroyed middle (red) loop
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Eject block e (and its loop) from the outer (cyan) loop
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Eject block d from outer (cyan) loop
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Eject block ¢ from outer (cyan) loop



Edge Deletion: (f,/)

exits:
{b}
exits:

||||||||||||||||||||

888 )
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Eject block b from outer (cyan) loop



Subgraph Duplication (Dominator Tree)
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Subgraph Duplication (Dominator Tree)
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Subgraph Duplication (Loop Nesting Forest)
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Straightening




Straightening (Example)

Find non-critical edge (where pred(s) = {p} A succ(p) = {s})
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Straightening (Example)

n< e
n < e

Convert block parameters to move instructions
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If Simplification




If Simplification (Example)

[switch r (71)()<2»—> c()) d()}
- U

Initial graph
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If Simplification (Example)

[switch r(1 »—>. b()) (2+<()) d()}
/LN
- U

Switch target known statically
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If Simplification (Example)

[switch unit (unit >—> b()) (unit — d()) c()]

~-UJuu

Rearrange terminator cases
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If Simplification (Example)

[switch unit (unit H b()) (unit — d()) c()}

~-UJuu

Run edge deletion on unit first case

22



If Simplification (Example)

[switch unit (unlt —d()) c()}

[\
-JUU
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If Simplification (Example)

[switch unit (unlt —d()) c()}
AN
-0 U

Run edge deletion on unit second case
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If Simplification (Example)

r<2

switch unit ¢()

~JUJ
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Jump Simplification




Jump Simplification (Example)

p() b(r) | eal)

switch r (cv = s1()) s2()

Initial graph
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Jump Simplification (Example)

pi() b_(_r,)

Pl

, P2()

switch [F] (cv = s1()) s2()

Switch target known statically on one path
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Jump Simplification (Example)

£ o) pa()

@ﬂ’ switch [ r (cv»—> s1()) s2() F/—@
RN

(Not necessarily all paths)
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Jump Simplification (Example)

b'(r) b(r)

pi()
-
[switch r (ev = s1()) s2() @—’ switch r (cv = s1()) s2()

\

Duplicate block with switch
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Jump Simplification (Example)

o) p0) o)

[switch r(ev i s1()) s2() switch r (cv = s1()) s2()

Thread the jump
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Jump Simplification (Example)

(1) ) b(r)

[switch r(ev i s1()) s2() switch r (cv = s1()) s2()

Run edge deletion on default case
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Jump Simplification (Example)

b'(r p1() b(r)

switch'l.l.nit s1() ‘—@ switch r (CV'—> s1()) s2()
(=]

S1
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Function Inlining




Function Inlining (Example 1)

Initial graph
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Function Inlining (Example 1)

- - _w __________
o @
exits: exits:
{a} 0

Initial graph with CFG/LNF of called function
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Function Inlining (Example 1)

@)
exits:
y \.
exits: exits:
{d'} 0

Inline call/return - merge loop structures
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Function Inlining (Example 1)

QO
exits:
exits: exits:
{a'} ]

Run block ejection on loop containing callsite

24



(Devil in the Details)




Function Inlining (Example 2)

Initial graph
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Function Inlining (Example 2)

- - _w __________
[ @
exits: exits:
0 0

Initial graph with CFG/LNF of called function
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Function Inlining (Example 2)

Inline call/return - merge loop structures
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Function Inlining (Example 2)

! ! . .
exits: exits:

0 0
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Loop Unswitching




Loop Unswitching (Example)

O

exits:

l {e}
exits:

Initial graph
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Loop Unswitching (Example)
O
E l exits:

{e}

exits:

exits:

@
: l {e}
E exits:

Clone loop containing switchable condition
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Loop Unswitching (Example)

[switch r (ev — h()) h/()j

i i exits:
{e}
[switch r (ev = 1)) 52()j + [switch r (cv — () sé()j ite

exits:

: l {e}
E exits:
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Update preheader to simulate switchable condition



Loop Unswitching (Example)

{e}

......... ’ 1)
§ l

~ 540) 550

exits:

exits:

: l {e2}
E exits:

26

Dedicate preheader and exits



Loop Unswitching (Example)

?H[switch r (cv s h() h’()}—»?

exits:

{e}

/

[switch unit (unit — s()) 51()] o [switch unit (unit — sq())

exits:

7
e —0 O

exits:

l {e2}
exits:

26

Rearrange terminator cases



Loop Unswitching (Example)

?H{switch r (cv s () h/()jﬂ? o
i l exits:
\ ! {e}
switch unit (unit — s{()) exits:
| i exits:

: l {e2}
E exits:

26

Run edge deletion on unswitched blocks



Loop Unswitching (Example)
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Loop Unrolling




Loop Unrolling (Example)
O
l exits:

{e}

exits:

{e.1}

Initial graph
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Loop Unrolling (Example)

exits:

{e}

o—0—O

exits:

{e.1}

exits:

{e}

o—0

exits:

{e,I'}

Duplicate loop
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Loop Unrolling (Example)

—O

exits:

{e}
exits:

{e.1}

exits:

{e,I'}

Over, under, pull it tight ...
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Loop Unrolling (Example)

O

exits:

{51,62}

exits:

{flvl}

exits:

{FQﬂ//}

Dedicate exits
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Loop Peeling




Loop Peeling (Example)
@)
l exits:

{e}

exits:

fe. 1}

Initial graph
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Loop Peeling (Example)

exits:

{e}

exits:

fe. 1}

exits:

{e}

exits:

{e.1'}

Duplicate loop
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Loop Peeling (Example)

Usurp latch

o

exits:

fe. 1}

exits:

{e}

exits:

{e.1'}
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Loop Peeling (Example)

exits:

{61,/}

exits:

{e2}

o

exits:

{527 //}

Dedicate exits
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Guarantees




Transformations

(f, D7 HF7 LF7XF) a;l'?> (fouh Douh Houta LoutaXout)
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Transformations

recomposes to loop nesting forest Foue
T —N—
(f; D, HF; LF7 XF) args> (fouh Douh Hout7 Louta Xout)
———

decomposition of loop nesting forest F
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Transformations

recomposes to loop nesting forest Foue
T —N—
(f; D, HF; LF7 XF) args> (fouh Douh Hout7 Louta Xout)
———

decomposition of loop nesting forest F

Note: D = Df and F = Ff assusmed for all optimizations
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Maintenance Properties

Theorem (Maintenance of Types)
If p| f is well-typed and f is in SSA form, then pl[f/fou] | fout is

well-typed.
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Maintenance Properties

Theorem (Maintenance of Types)
If p| f is well-typed and f is in SSA form, then pl[f/fou] | fout is

well-typed.

Theorem (Maintenance of LCSSA Form)
If f is in LCSSA form, then f,,; is in LCSSA form.

Theorem (Maintenance of Canonical Form)
If f is in canonical form, then fo,: is in canonical form.

Theorem (Maintenance of Dominator Tree)
The unique dominator tree of Gy, is Doyt .

Theorem (Maintenance of Loop Nesting Forest)
If f is in canonical form, then F,,: reconstructed from (Hout, Louts Xout)

is the unique loop nesting forest of Gg,,, .
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IR Semantic

Small-step Reduction

(p £,0) [y v ]|V s) = ((p, f',0)) [~ [V ||V §)

Streams
s=1l,...,lk,T,3§ S={(f,b,r,s)|e
Contexts
(registers) v :R—cv
(memory) p N—{0,1}

(effects) V= (1)
¢ = F(v;) | halt(v) | halt(ex(err))

(nondeterminism) v
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Maintenance Properties

Theorem (Semantic Equivalence)
Let p' = f[f/fous] and let oref = [ref /ref fous]. If there exists an n-step

evaluation of f such that
(plylplv|V; £(@7) =5 (P frs be) [ | 1 |V [V s,)
then there exists a symmetric n'-step evaluation of f,,: such that
(P17l v | Vs foue(cve[orer]) =" (s fiar bea) [ 72 | 1/ |V | W [orer]: t,)

and vice versa.
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Evaluation




Methodology

Baseline:
Canonicalize Program
Build worklist of optimizations (for a particular optimization)
Perform optimizations without maintaining properties
Rebuild canonical form at end
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Methodology

Baseline:
Canonicalize Program
Build worklist of optimizations (for a particular optimization)
Perform optimizations without maintaining properties
Rebuild canonical form at end

Comparison:
Canonicalize Program
Build worklist of optimizations (for a particular optimization)
Perform optimizations while maintaining properties
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Evaluation Results
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To Summarize




Description of Incremental Optimizer Construction Methodology

Formalized Kernel IR (with deterministic semantics)

e Proof-of-Concept Implementation

Correctness Evaluation (maintenance proofs)

Runtime Evaluation
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Let's Discuss!
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