Waddle

Always-Canonical Intermediate Representation

Eric Fritz
December 3, 2018

University of Wisconsin — Milwaukee

Standard Compiler Architecture

Frontend: lex, parse, name resolution, typechecking
Middle-end: high-level symbolic optimization
Backend: machine-level optimization, register assignment, synthesis

Waddle’s IR: Euclid’s Algorithm

a(r: int, ra: int) c()

(switen r2 (0 c()) b() }——{revurn |

r3 < mod(ry, r2)

branch a(r, r3)

Waddle’s IR: Euclid’s Algorithm

a(r: int, ra: int) c()

(switen r2 (0 c()) b() }——{revurn |

r3 < mod(ry, r2)

branch a(rz, r3) a(r: int, ra: int)
(switen 12 (0 () b0) |

) /

r3 <—mod(ri, r2))

1y — addr(ged)
rs < call(rg, ra, r3)

return r5

Non-Incremental Architecture: Pass Manager

For each optimization o (in a fixed order) and for each function f:

Non-Incremental Architecture: Pass Manager

For each optimization o (in a fixed order) and for each function f:
Recalculate all dirty structures/properties of f required by o

Non-Incremental Architecture: Pass Manager

For each optimization o (in a fixed order) and for each function f:
Recalculate all dirty structures/properties of f required by o
Execute o over f

Non-Incremental Architecture: Pass Manager

For each optimization o (in a fixed order) and for each function f:
Recalculate all dirty structures/properties of f required by o
Execute o over f
Mark all structures/properties of f dirty unless explicitly preserved by o

Non-Incremental Architecture: Pass Manager

For each optimization o (in a fixed order) and for each function f:

Recalculate all dirty structures/properties of f required by o

Execute o over f

Mark all structures/properties of f dirty unless explicitly preserved by o

loop-simplify m loop-simplify

domtree

L

— IRy

loop-simplify
A,

domtree

Lo

4

Waddle’s Architecture: Always-Canonical

For each optimization oc (in a fixed order) and for each function f:

Waddle’s Architecture: Always-Canonical

For each optimization oc (in a fixed order) and for each function f:
Execute oc over f

Waddle’s Architecture: Always-Canonical

For each optimization oc (in a fixed order) and for each function f:
Execute oc over f

(oc is written to incrementally maintain common structures/properties)

Dream Architecture: Phaseless

For each function f:

Dream Architecture: Phaseless

For each function f:
Build worklist of optimization opportunities by benefit

Dream Architecture: Phaseless

For each function f:
Build worklist of optimization opportunities by benefit

While most beneficial optimization o is above threshold,
Dequeue and execute o

Dream Architecture: Phaseless

For each function f:
Build worklist of optimization opportunities by benefit

While most beneficial optimization o is above threshold,
Dequeue and execute o

As o modifies the program,
new opportunities are scored and enqueued

What Does Waddle Maintain? (1)

Dominator Tree
encodes which blocks occur on all paths to another block

What Does Waddle Maintain? (1)

Dominator Tree
encodes which blocks occur on all paths to another block

T
hy

®

What Does Waddle Maintain? (2)

Loop Nesting Forest
encodes loop body sets - loop exit sets - loop nesting structure

What Does Waddle Maintain? (2)

Loop Nesting Forest
encodes loop body sets - loop exit sets - loop nesting structure

What Does Waddle Maintain? (3)

SSA Form
all names defined once

What Does Waddle Maintain? (3)

SSA Form
all names defined once

What Does Waddle Maintain? (3)

SSA Form
all names defined once

y — o(x1, x2)
...<—y

What Does Waddle Maintain? (3)

SSA Form
all names defined once

/O\

Xp 4 e Xp 4 e
[branch j(xl)] [branch j(xz)]
0

What Does Waddle Maintain? (4)

LCSSA Form
all uses of name occur within defining loop

What Does Waddle Maintain? (4)

LCSSA Form
all uses of name occur within defining loop

What Does Waddle Maintain? (4)

LCSSA Form
all uses of name occur within defining loop

What Does Waddle Maintain? (5)

‘Canonical’ Properties
Equivalent to LLVM's Loop Simplify Form

10

What Does Waddle Maintain? (5)

‘Canonical’ Properties
Equivalent to LLVM's Loop Simplify Form

Every natural loop must have:

a dedicated preheader, dedicated exits, and a unique latch

10

Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

11

Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

(o)

11

Canonical Properties

Dedicated Exit Blocks
enables easy + efficient effect sinking

12

Canonical Properties

Dedicated Exit Blocks
enables easy + efficient effect sinking

12

Canonical Properties

Unique Backedge + Latch
makes destruction of loop unambiguous

13

Canonical Properties

Unique Backedge + Latch
makes destruction of loop unambiguous

13

Graph Modifications

Observations

14

Observations

Edge can be deleted arbitrarily
Edge deletion affects a bounded subgraph

14

Observations

Edge can be deleted arbitrarily
Edge deletion affects a bounded subgraph

Edges cannot be added arbitrarily
Single-entry subgraphs can instead be duplicated
Preserves domination, loop structure, SSA and LCSSA properties

14

Edge Deletion

Edge Deletion: Simple Example

15

Edge Deletion: (j, h)

Initial graph 16

Edge Deletion: (j, h)

Edge deleted

exits:

exits:

{1}

exits:

{k 1}

16

Edge Deletion: (j, h)

Eject block j from inner (blue) loop

exits:

exits:

{1}

exits:
sk, 1}

16

Edge Deletion: (j, h)

Eject block 7 from inner (blue) loop

exits:

exits:

{1}

exits:

{i}

16

Edge Deletion: (j, h)

Eject block j from middle (red) loop

exits:

exits:

.1

exits:

{i}

16

Edge Deletion: (j, h)

Place block €, on edge (7, /) to dedicate exit

exits:

exits:

{j,E/}

exits:

{i}

16

Edge Deletion

Edge Deletion: Chaos Example

17

Edge Deletion: (f,/)

Initial graph 18

Edge Deletion: (f,/)

Edge deleted

exits:

exits:

{1}

exits:

{k 1}

18

Edge Deletion: (f,/)

Q

© «xits:
0

@ «iits:
0

@® «its:
0

Remove unreachable blocks from graph, loop nesting forest 18

=
o
N—"
=
2
L
=
)
o
o)
a0
©
w

exits:

exits:

18

Remove destroyed middle (red) loop

=
o
N—"
=
2
L
=
)
o
o)
a0
©
w

“
=
x
(9]

e L

{e}

exits:

18

Eject block e (and its loop) from the outer (cyan) loop

=
o
N—"
=
2
L
=
)
o
o)
a0
©
w

“
=
x
(9]

e L

{d}

exits:

18

Eject block d from outer (cyan) loop

=
o
N—"
=
2
L
=
)
o
o)
a0
©
w

18

Eject block ¢ from outer (cyan) loop

Edge Deletion: (f,/)

exits:
{b}
exits:

||||||||||||||||||||

888)

18

Eject block b from outer (cyan) loop

Subgraph Duplication (Dominator Tree)

)
a o«
4P oy
o

Subgraph Duplication (Dominator Tree)

19

Subgraph Duplication (Loop Nesting Forest)

20

—~
)
0
Q
~
(@]
L
o0
£
e}
0
Q
2
Q.
o
o
-l
~—
=
S
)
T
D
=
=
o
—
o
L)
~
a0
e
=
wn

20

Straightening

Straightening (Example)

Find non-critical edge (where pred(s) = {p} A succ(p) = {s})

21

Straightening (Example)

n< e
n < e

Convert block parameters to move instructions

21

If Simplification

If Simplification (Example)

[switch r (71)()<2»—> c()) d()}
- U

Initial graph

22

If Simplification (Example)

[switch r(1 »—>. b()) (2+<()) d()}
/LN
- U

Switch target known statically

22

If Simplification (Example)

[switch unit (unit >—> b()) (unit — d()) c()]

~-UJuu

Rearrange terminator cases

22

If Simplification (Example)

[switch unit (unit H b()) (unit — d()) c()}

~-UJuu

Run edge deletion on unit first case

22

If Simplification (Example)

[switch unit (unlt —d()) c()}

[\
-JUU

22

If Simplification (Example)

[switch unit (unlt —d()) c()}
AN
-0 U

Run edge deletion on unit second case

22

If Simplification (Example)

r<2

switch unit ¢()

~JUJ

22

Jump Simplification

Jump Simplification (Example)

p() b(r) | eal)

switch r (cv = s1()) s2()

Initial graph

23

Jump Simplification (Example)

pi() b_(_r,)

Pl

, P2()

switch [F] (cv = s1()) s2()

Switch target known statically on one path

23

Jump Simplification (Example)

£ o) pa()

@ﬂ’ switch [r (cv»—> s1()) s2() F/—@
RN

(Not necessarily all paths)

23

Jump Simplification (Example)

b'(r) b(r)

pi()
-
[switch r (ev = s1()) s2() @—’ switch r (cv = s1()) s2()

\

Duplicate block with switch

23

Jump Simplification (Example)

o) p0) o)

[switch r(ev i s1()) s2() switch r (cv = s1()) s2()

Thread the jump

23

Jump Simplification (Example)

(1)) b(r)

[switch r(ev i s1()) s2() switch r (cv = s1()) s2()

Run edge deletion on default case

23

Jump Simplification (Example)

b'(r p1() b(r)

switch'l.l.nit s1() ‘—@ switch r (CV'—> s1()) s2()
(=]

S1

, P2()

23

Function Inlining

Function Inlining (Example 1)

Initial graph

24

Function Inlining (Example 1)

- - _w __________
o @
exits: exits:
{a} 0

Initial graph with CFG/LNF of called function

24

Function Inlining (Example 1)

@)
exits:
y \.
exits: exits:
{d'} 0

Inline call/return - merge loop structures

24

Function Inlining (Example 1)

QO
exits:
exits: exits:
{a'}]

Run block ejection on loop containing callsite

24

(Devil in the Details)

Function Inlining (Example 2)

Initial graph

25

Function Inlining (Example 2)

- - _w __________
[@
exits: exits:
0 0

Initial graph with CFG/LNF of called function

25

Function Inlining (Example 2)

Inline call/return - merge loop structures

25

~~
(q]
o
o
£
L]
X
(NN
—
o1}
£
£
=
c
S
)
(]
c
=
LL

Delete fake edge (b1, bo)

25

Function Inlining (Example 2)

! ! . .
exits: exits:

0 0

25

Loop Unswitching

Loop Unswitching (Example)

O

exits:

l {e}
exits:

Initial graph

26

Loop Unswitching (Example)
O
E l exits:

{e}

exits:

exits:

@
: l {e}
E exits:

Clone loop containing switchable condition

26

Loop Unswitching (Example)

[switch r (ev — h()) h/()j

i i exits:
{e}
[switch r (ev = 1)) 52()j + [switch r (cv — () sé()j ite

exits:

: l {e}
E exits:

26

Sy

|
- 1 =
. : r
! / / 1
:I @I :I
0] 0 1
Soogsd I M

Update preheader to simulate switchable condition

Loop Unswitching (Example)

{e}

......... ’ 1)
§ l

~ 540) 550

exits:

exits:

: l {e2}
E exits:

26

Dedicate preheader and exits

Loop Unswitching (Example)

?H[switch r (cv s h() h’()}—»?

exits:

{e}

/

[switch unit (unit — s()) 51()] o [switch unit (unit — sq())

exits:

7
e —0 O

exits:

l {e2}
exits:

26

Rearrange terminator cases

Loop Unswitching (Example)

?H{switch r (cv s () h/()jﬂ? o
i l exits:
\ ! {e}
switch unit (unit — s{()) exits:
| i exits:

: l {e2}
E exits:

26

Run edge deletion on unswitched blocks

Loop Unswitching (Example)

26

Loop Unrolling

Loop Unrolling (Example)
O
l exits:

{e}

exits:

{e.1}

Initial graph

27

Loop Unrolling (Example)

exits:

{e}

o—0—O

exits:

{e.1}

exits:

{e}

o—0

exits:

{e,I'}

Duplicate loop

27

Loop Unrolling (Example)

—O

exits:

{e}
exits:

{e.1}

exits:

{e,I'}

Over, under, pull it tight ...

27

Loop Unrolling (Example)

O

exits:

{51,62}

exits:

{flvl}

exits:

{FQﬂ//}

Dedicate exits

27

Loop Peeling

Loop Peeling (Example)
@)
l exits:

{e}

exits:

fe. 1}

Initial graph

28

Loop Peeling (Example)

exits:

{e}

exits:

fe. 1}

exits:

{e}

exits:

{e.1'}

Duplicate loop

28

Loop Peeling (Example)

Usurp latch

o

exits:

fe. 1}

exits:

{e}

exits:

{e.1'}

28

Loop Peeling (Example)

exits:

{61,/}

exits:

{e2}

o

exits:

{527 //}

Dedicate exits

28

Guarantees

Transformations

(f, D7 HF7 LF7XF) a;l'?> (fouh Douh Houta LoutaXout)

29

Transformations

recomposes to loop nesting forest Foue
T —N—
(f; D, HF; LF7 XF) args> (fouh Douh Hout7 Louta Xout)
———

decomposition of loop nesting forest F

29

Transformations

recomposes to loop nesting forest Foue
T —N—
(f; D, HF; LF7 XF) args> (fouh Douh Hout7 Louta Xout)
———

decomposition of loop nesting forest F

Note: D = Df and F = Ff assusmed for all optimizations

29

Maintenance Properties

Theorem (Maintenance of Types)
If p| f is well-typed and f is in SSA form, then pl[f/fou] | fout is

well-typed.

30

Maintenance Properties

Theorem (Maintenance of Types)
If p| f is well-typed and f is in SSA form, then pl[f/fou] | fout is

well-typed.

Theorem (Maintenance of LCSSA Form)
If f is in LCSSA form, then f,,; is in LCSSA form.

30

Maintenance Properties

Theorem (Maintenance of Types)
If p| f is well-typed and f is in SSA form, then pl[f/fou] | fout is

well-typed.

Theorem (Maintenance of LCSSA Form)
If f is in LCSSA form, then f,,; is in LCSSA form.

Theorem (Maintenance of Canonical Form)
If f is in canonical form, then fo,: is in canonical form.

30

Maintenance Properties

Theorem (Maintenance of Types)
If p| f is well-typed and f is in SSA form, then pl[f/fou] | fout is

well-typed.

Theorem (Maintenance of LCSSA Form)
If f is in LCSSA form, then f,,; is in LCSSA form.

Theorem (Maintenance of Canonical Form)
If f is in canonical form, then fo,: is in canonical form.

Theorem (Maintenance of Dominator Tree)
The unique dominator tree of Gy, is Doyt .

30

Maintenance Properties

Theorem (Maintenance of Types)
If p| f is well-typed and f is in SSA form, then pl[f/fou] | fout is

well-typed.

Theorem (Maintenance of LCSSA Form)
If f is in LCSSA form, then f,,; is in LCSSA form.

Theorem (Maintenance of Canonical Form)
If f is in canonical form, then fo,: is in canonical form.

Theorem (Maintenance of Dominator Tree)
The unique dominator tree of Gy, is Doyt .

Theorem (Maintenance of Loop Nesting Forest)
If f is in canonical form, then F,,: reconstructed from (Hout, Louts Xout)

is the unique loop nesting forest of Gg,,, .

30

IR Semantic

Small-step Reduction

(p £,0) [y v]|V s) = ((p, f',0)) [~ [V ||V §)

Streams
s=1l,...,lk,T,3§ S={(f,b,r,s)|e
Contexts
(registers) v :R—cv
(memory) p N—{0,1}

(effects) V= (1)
¢ = F(v;) | halt(v) | halt(ex(err))

(nondeterminism) v

31

Maintenance Properties

Theorem (Semantic Equivalence)
Let p' = f[f/fous] and let oref = [ref /ref fous]. If there exists an n-step

evaluation of f such that
(plylplv|V; £(@7) =5 (P frs be) [| 1 |V [V s,)
then there exists a symmetric n'-step evaluation of f,,: such that
(P17l v | Vs foue(cve[orer]) =" (s fiar bea) [72 | 1/ |V | W [orer]: t,)

and vice versa.

32

Evaluation

Methodology

Baseline:
Canonicalize Program
Build worklist of optimizations (for a particular optimization)
Perform optimizations without maintaining properties
Rebuild canonical form at end

33

Methodology

Baseline:
Canonicalize Program
Build worklist of optimizations (for a particular optimization)
Perform optimizations without maintaining properties
Rebuild canonical form at end

Comparison:
Canonicalize Program
Build worklist of optimizations (for a particular optimization)
Perform optimizations while maintaining properties

33

Evaluation Results

100 T
¢
80 o) B
: &
g 60 @ 5 j B
(9] @ ®
o 40| @ |
g & 8
5 20 o) =
=)
2 &
0 o -
o)
—20 @ \ \ \ \ \ \ |
IS Fl JS JT S UNR UNS

34

To Summarize

Description of Incremental Optimizer Construction Methodology

Formalized Kernel IR (with deterministic semantics)

e Proof-of-Concept Implementation

Correctness Evaluation (maintenance proofs)

Runtime Evaluation

35

Let's Discuss!

	Graph Modifications
	Straightening
	If Simplification
	Jump Simplification
	Function Inlining
	(Devil in the Details)
	Loop Unswitching
	Loop Unrolling
	Loop Peeling
	Guarantees
	Evaluation
	To Summarize

