Waddle

Always-Canonical Intermediate Representation

Eric Fritz

December 3, 2018

University of Wisconsin - Milwaukee

Standard Compiler Architecture

Frontend: lex, parse, name resolution, typechecking Middle-end: high-level symbolic optimization

Backend: machine-level optimization, register assignment, synthesis

Waddle's IR: Euclid's Algorithm

Waddle's IR: Euclid's Algorithm

For each optimization o (in a fixed order) and for each function f:

For each optimization o (in a fixed order) and for each function f: Recalculate all dirty structures/properties of f required by o

For each optimization o (in a fixed order) and for each function f:

Recalculate all dirty structures/properties of f required by oExecute o over f

For each optimization o (in a fixed order) and for each function f:

Recalculate all dirty structures/properties of f required by oExecute o over fMark all structures/properties of f dirty unless explicitly preserved by o

For each optimization o (in a fixed order) and for each function f: Recalculate all dirty structures/properties of f required by oExecute o over f

Mark all structures/properties of f dirty unless explicitly preserved by o

Waddle's Architecture: Always-Canonical

For each optimization o_C (in a fixed order) and for each function f:

Waddle's Architecture: Always-Canonical

For each optimization o_C (in a fixed order) and for each function f: Execute o_C over f

Waddle's Architecture: Always-Canonical

For each optimization o_C (in a fixed order) and for each function f: Execute o_C over f

(o_C is written to incrementally maintain common structures/properties)

For each function f:

For each function f: Build worklist of optimization opportunities by benefit

For each function f: Build worklist of optimization opportunities by benefit

While most beneficial optimization o is above threshold, Dequeue and execute o

For each function f: Build worklist of optimization opportunities by benefit

While most beneficial optimization o is above threshold, Dequeue and execute o

 $\mbox{As o modifies the program,} \\ \mbox{new opportunities are scored and enqueued}$

Dominator Tree encodes which blocks occur on all paths to another block

Dominator Tree encodes which blocks occur on all paths to another block

Loop Nesting Forest encodes loop body sets · loop exit sets · loop nesting structure

Loop Nesting Forest encodes loop body sets · loop exit sets · loop nesting structure

SSA Form all names defined once

SSA Form all names defined once

SSA Form all names defined once

SSA Form all names defined once

$\label{eq:LCSSA} \mbox{LCSSA Form} \\ \mbox{all uses of name occur within defining loop}$

 $\label{eq:LCSSA} \mbox{LCSSA Form} \\ \mbox{all uses of name occur within defining loop}$

'Canonical' Properties
Equivalent to LLVM's Loop Simplify Form

'Canonical' Properties
Equivalent to LLVM's Loop Simplify Form

Every natural loop must have:
a **dedicated** preheader, **dedicated** exits, and a **unique** latch

Dedicated Preheader enables easy + efficient instruction hoisting

Dedicated Preheader enables easy + efficient instruction hoisting

Dedicated Exit Blocks enables easy + efficient effect sinking

Dedicated Exit Blocks enables easy + efficient effect sinking

Unique Backedge + Latch makes destruction of loop unambiguous

 $\begin{tabular}{ll} Unique \ Backedge + Latch \\ makes \ destruction \ of \ loop \ unambiguous \\ \end{tabular}$

Graph Modifications

Operations

Observations

Operations

Observations

Edge can be deleted arbitrarily Edge deletion affects a *bounded* subgraph

Operations

Observations

Edge can be deleted arbitrarily Edge deletion affects a *bounded* subgraph

Edges **cannot** be added arbitrarily
Single-entry subgraphs can instead be *duplicated*Preserves domination, loop structure, SSA and LCSSA properties

Edge Deletion

Edge Deletion: Simple Example

Eject block j from inner (blue) loop

Eject block i from inner (blue) loop

Eject block j from middle (red) loop

Place block ϵ_l on edge (i, l) to dedicate exit

Edge Deletion

Edge Deletion: Chaos Example

Remove unreachable blocks from graph, loop nesting forest

Eject block e (and its loop) from the outer (cyan) loop

Eject block d from outer (cyan) loop

Eject block c from outer (cyan) loop

Eject block b from outer (cyan) loop

Subgraph Duplication (Dominator Tree)

Subgraph Duplication (Dominator Tree)

Subgraph Duplication (Loop Nesting Forest)

Subgraph Duplication (Loop Nesting Forest)

Straightening

Straightening (Example)

Find non-critical edge (where $pred(s) = \{p\} \land succ(p) = \{s\}$)

Straightening (Example)

Convert block parameters to move instructions

If Simplification

Initial graph

Switch target known statically

Rearrange terminator cases

Run edge deletion on unit first case

Run edge deletion on unit second case

Jump Simplification

Jump Simplification (Example)

Initial graph

Switch target known statically on one path

(Not necessarily all paths)

Duplicate block with switch

Thread the jump

Run edge deletion on default case

Function Inlining

Initial graph

Initial graph with CFG/LNF of called function

Inline call/return - merge loop structures

Run block ejection on loop containing callsite

(Devil in the Details)

Initial graph

Initial graph with CFG/LNF of called function

Inline call/return - merge loop structures

Delete fake edge (b_1, b_2)

Loop Unswitching

Initial graph

Clone loop containing switchable condition

Update preheader to simulate switchable condition

Dedicate preheader and exits

Rearrange terminator cases

Run edge deletion on unswitched blocks

Loop Unrolling

Initial graph

Duplicate loop

Over, under, pull it tight ...

Dedicate exits

Loop Peeling

Initial graph

Duplicate loop

Usurp latch

Dedicate exits

Guarantees

Transformations

$$(f, D, H_F, L_F, X_F) \xrightarrow[args]{\mathsf{T}} (f_{out}, D_{out}, H_{out}, L_{out}, X_{out})$$

Transformations

recomposes to loop nesting forest
$$F_{out}$$

$$(f, D, H_F, L_F, X_F) \xrightarrow{T} (f_{out}, D_{out}, H_{out}, L_{out}, X_{out})$$
decomposition of loop nesting forest F

Transformations

recomposes to loop nesting forest
$$F_{out}$$

$$(f, D, \underbrace{H_F, L_F, X_F}) \xrightarrow{T} \underbrace{(f_{out}, D_{out}, H_{out}, L_{out}, X_{out})}_{args}$$
decomposition of loop nesting forest F

Note: $D \equiv D_f$ and $F \equiv F_f$ assusmed for all optimizations

Theorem (Maintenance of Types) If $p \mid f$ is well-typed and f is in SSA form, then $p[f/f_{out}] \mid f_{out}$ is well-typed.

Theorem (Maintenance of Types) If $p \mid f$ is well-typed and f is in SSA form, then $p[f/f_{out}] \mid f_{out}$ is well-typed.

Theorem (Maintenance of LCSSA Form) If f is in LCSSA form, then f_{out} is in LCSSA form.

Theorem (Maintenance of Types) If $p \mid f$ is well-typed and f is in SSA form, then $p[f/f_{out}] \mid f_{out}$ is well-typed.

Theorem (Maintenance of LCSSA Form) *If f is in LCSSA form, then f_{out} is in LCSSA form.*

Theorem (Maintenance of Canonical Form) *If f is in canonical form, then f_{out} is in canonical form.*

Theorem (Maintenance of Types) If $p \mid f$ is well-typed and f is in SSA form, then $p[f/f_{out}] \mid f_{out}$ is well-typed.

Theorem (Maintenance of LCSSA Form) *If f is in LCSSA form, then f_{out} is in LCSSA form.*

Theorem (Maintenance of Canonical Form) *If f is in canonical form, then f_{out} is in canonical form.*

Theorem (Maintenance of Dominator Tree) The unique dominator tree of $G_{f_{out}}$ is D_{out} .

Theorem (Maintenance of Types) If $p \mid f$ is well-typed and f is in SSA form, then $p[f/f_{out}] \mid f_{out}$ is well-typed.

Theorem (Maintenance of LCSSA Form) *If f is in LCSSA form, then f_{out} is in LCSSA form.*

Theorem (Maintenance of Canonical Form) *If f is in canonical form, then* f_{out} *is in canonical form.*

Theorem (Maintenance of Dominator Tree) The unique dominator tree of $G_{f_{out}}$ is D_{out} .

Theorem (Maintenance of Loop Nesting Forest) If f is in canonical form, then F_{out} reconstructed from $(H_{out}, L_{out}, X_{out})$ is the unique loop nesting forest of $G_{f_{out}}$.

IR Semantic

Small-step Reduction

$$(\langle p, f, b \rangle \mid \gamma \mid \nu \mid \mu \mid \Psi; \ s) \rightarrow (\langle p, f', b' \rangle \mid \gamma' \mid \nu' \mid \mu' \mid \Psi'; \ s')$$

Streams

$$s = I_1, \ldots, I_k, T, \hat{s}$$
 $\hat{s} = \langle f, b, r, s \rangle \mid \epsilon$

Contexts

$$\begin{array}{ll} \text{(registers)} & \gamma : R \to cv \\ \text{(memory)} & \mu : \mathbb{N} \to \{0,1\} \\ \text{(effects)} & \Psi = \langle \overline{\psi} \rangle \\ & \psi = \hat{f}(\overline{v_i}) \mid \text{halt}(v) \mid \text{halt}(\textbf{ex}(\textbf{err})) \end{array}$$
 (nondeterminism) ν

Theorem (Semantic Equivalence)

Let $p' = f[f/f_{out}]$ and let $\sigma_{ref} = [ref'f/ref f_{out}]$. If there exists an n-step evaluation of f such that

$$\left(p\mid\gamma\mid\mu\mid\nu\mid\Psi;\ f\left(\overline{cv_{t_{i}}}\right)\right)\rightarrow_{\rho}^{n}\left(\langle p,f_{t_{1}},b_{t_{1}}\rangle\mid\gamma_{1}\mid\mu'\mid\nu'\mid\Psi';\ s_{t_{1}}\right)$$

then there exists a symmetric n'-step evaluation of f_{out} such that

$$(p' \mid \gamma \mid \mu \mid \nu \mid \Psi; \ f_{out}(\overline{cv_{t_i}[\sigma_{ref}]}) \rightarrow^{n'} (\langle p', f_{t_2}, b_{t_2} \rangle \mid \gamma_2 \mid \mu' \mid \nu' \mid \Psi'[\sigma_{ref}]; \ s_{t_2})$$
 and vice versa.

32

Evaluation

Methodology

Baseline:

Canonicalize Program

Build worklist of optimizations (for a particular optimization)

Perform optimizations without maintaining properties

Rebuild canonical form at end

Methodology

Baseline:

Canonicalize Program

Build worklist of optimizations (for a particular optimization)

Perform optimizations without maintaining properties

Rebuild canonical form at end

Comparison:

Canonicalize Program

Build worklist of optimizations (for a particular optimization)

Perform optimizations while maintaining properties

Evaluation Results

To Summarize

Contributions

- Description of Incremental Optimizer Construction Methodology
- Formalized Kernel IR (with deterministic semantics)
- Proof-of-Concept Implementation
- Correctness Evaluation (maintenance proofs)
- Runtime Evaluation

