
Type Inference of Asynchronous Arrows in JavaScript

Eric Fritz Tian Zhao
University of Wisconsin-Milwaukee

{fritz,tzhao}@uwm.edu

Abstract
Asynchronous programming with callbacks in JavaScript leads to
code that is difficult to understand and maintain. Arrows, a gen-
eralization of monads, are an elegant solution to asynchronous
program composition. Unfortunately, improper arrow composition
can cause mysterious failures with subtle sources. We present an
arrows-based DSL in JavaScript which encodes semantics similar
to ES6 Promises and an optional type-checker that reports errors at
arrow composition time.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—Software libraries; D.2.5
[Software Engineering]: Testing and Debugging—Error handling
and recovery

Keywords Type Systems, Type Inference, Arrows, JavaScript,
Asynchronous Programming, Concurrent Programming

1. Introduction
Event programming is prevalent in JavaScript. As the lingua franca
of the web, it is responsible for driving a huge amount of user-
interactive web applications. Because JavaScript is commonly ex-
ecuted in a single thread, blocking or long-running computations
can often cause the page or entire browser to appear unresponsive.
As a result, JavaScript programs are written in an event-driven style
where programs register callback functions with the event loop. A
callback function is dispatched by the event loop when an external
event occurs, and control returns to the event loop once a callback
function completes execution.

Heavy use of callbacks make control flow difficult to trace.
Application logic becomes intimately mixed with sequencing logic.
A single unit of application code may no longer be confined to one
easily-readable function, but split arbitrarily far across a number
of functions. This greatly decreases code understandability and
maintainability.

The introduction of Promises in ES6 demonstrates a desire to re-
duce the complexity of callback-driven programs. Promises allow
callbacks to be chained instead of nested, regaining some impera-
tive flow of control. Similarly, Arrowlets [6] has demonstrated an
elegant solution to composing callback functions by wrapping them
in opaque units of execution using continuation functions. These

Submitted to the Workshop on Reactive and Event-based Languages & Systems, 2015.

units of execution encode arrows [5], which is a generalization of
monads [11].

However, JavaScript lacks properties that make function, arrow,
or promise composition palatable. Illegal compositions are not for-
bidden at composition time and often crash or lead to subtle be-
havioral issues at runtime. Frustratingly, the source location which
displays incorrect behavior is often completely independent of the
source location of the actual error, making the associated stack trace
less than helpful. These errors force the developer to trace the ar-
row execution path backwards from the source of a runtime error,
continuation-function by continuation-function, until the erroneous
composition presents itself. Despite the benefits, this seems to leave
the developer no better off than using callbacks during debugging.

Fortunately, there is a clear separation between the composition
time and the execution time of arrows. It is possible to detect errors
after the arrows have been composed but before their actual execu-
tion starts. To this end, we have developed an optional type-checker
which infers and attaches a type to every arrow at composition time
describing its input and output constraints and forbids the compo-
sition of two arrows that are not type-composable. This reduces a
rather large class of errors during composition related to input/out-
put clashes and requires only that the user adds an annotation to
functions which are lifted into arrows.

This type-checker runs in pure JavaScript at program runtime
and thus requires no pre-processing step. While the type-checker
does not find errors prior to runtime, it does find errors prior to
arrow execution-time. This technique effectively moves the source
of errors from the point where an error may be observed to the
point where an erroneous composition occurs. We have found this
relocation of error messages invaluable and feel that moving errors
earlier in runtime (without moving them completely outside of
runtime) still provides a great benefit. The type-checker may be
disabled, returning the program to the original runtime semantics
without dynamic type-checks.

Our Contributions The main contributions of this paper are

1. an encoding of arrows which handles asynchronous errors in a
manner similar to ES6 Promises, and

2. and an optional type system to aid developers with type-directed
composition of asynchronous arrows.

The remainder of this paper is organized as follows. Section 2
provides a motivating example. Section 3 introduces the arrow
constructors and combinators in our library and discusses their
runtime semantics and encoding. Section 4 provides details of
the type inference system and presents typing rules. Section 5
discusses the runtime cost and the development overhead of our
library. Section 6 presents related work and Section 7 concludes.
Our arrows library, the type-checker, and some sample applications
are freely available 1.

1 http://arrows.eric-fritz.com

http://arrows.eric-fritz.com

1 const makeConf = (resource , id) => {
2 'url' : '/api/v1/' + resource + '/' + id,
3 'dataType ': 'json'
4 };
5

6 var ajaxA = new AjaxArrow(id => {
7 /* @conf :: Number
8 @resp :: {a: Number} */
9 return makeConf('a', id);

10 });
11

12 var ajaxB = new AjaxArrow(id => {
13 /* @conf :: Number
14 @resp :: {b: Number} */
15 return makeConf('b', id);
16 });
17

18 var ajaxC = new AjaxArrow(id => {
19 /* @conf :: Number
20 @resp :: {c: Number} */
21 return makeConf('c', id);
22 });
23

24 function log() {
25 console.log(arguments);
26 }
27

28 const getId = () => /* @arrow :: T ∼> Number */ 3;
29 const onErr = ex => {
30 /* @arrow :: AjaxError ∼> () */
31 console.log('Remote server problem.');
32 }
33

34 const getA = o => /* @arrow :: {a: `x} ∼> `x */ o.a;
35 const getB = o => /* @arrow :: {b: `x} ∼> `x */ o.b;
36 const getC = o => /* @arrow :: {c: `x} ∼> `x */ o.c;
37

38 Arrow.catch(
39 Arrow.seq(
40 Arrow.lift(getId),
41 ajaxA , Arrow.lift(getA),
42 ajaxB , Arrow.lift(getB),
43 ajaxC , Arrow.lift(getC),
44 Arrow.lift(log)),
45 Arrow.lift(onErr)
46).run()

Figure 1. Arrow example

2. Example
To illustrate the utility of our type inference tool, consider the
example in Figure 1. Three Ajax calls are made to retrieve data
from a remote sever, and the resource path of each call depends
on a result from the previous call. The final result is printed to the
console, and any errors are caught and logged.

The details of the arrow methods are explained in Section 3.
For now, it is sufficient to understand that lift converts a function
into an arrow, seq chains two or more arrows in sequence, catch
executes the first arrow and uses the second as an exception han-
dler, and an arrow does not begin execution until its run method
is called. Functions which are lifted into arrows are generally an-
notated with a type. If a function does not have an annotation we
assume that the function can accept anything and may return any-
thing.

Without type-checking, a number of runtime errors could occur
from this example. Composition of arrows could be misaligned
such that the output of one arrow does not conform the input of
another. There are at least seven points of potential failures in this
small example. As remote requests take a long time to complete,
runtime debugging for these kinds of programs may be particularly
frustrating.

Using our type inference tool, developers can add type annota-
tions for functions which are transformed into arrows. This enables

typing errors to be discovered as early as possible. In particular,
illegal composition of arrows would be discovered at composition
time before any Ajax request is attempted. For example, getA ex-
pects its input to have a record type {a : ′x}, where ′x is a type
variable. We ensure that the result type {a : Number} of the pre-
ceding arrow ajaxA can be unified with this type.

The result of ajaxA is type-checked at arrow execution time
to ensure that the result matches the annotated type. Even though
this dynamic type-check takes place after composition time, it still
moves a possible error from the point where an unexpected value
is read to the point where it is created. Such runtime checks can be
disabled after testing.

3. Arrows
An arrow is a composable, opaque unit of execution which, in this
context, runs in an asynchronous manner. An arrow may receive
a number of arguments, but may only receive them from another
arrow. Similarly, an arrow may produce a value, but that value may
only be consumed by another arrow.

We embed a typed domain-specific language based on arrow
operations into JavaScript. The host language may lift a function
into an arrow, run an arrow, or cancel a running arrow. Arrows
are meant to replace operations in JavaScript which were primarily
asynchronous or callback-driven. As a result, values cannot flow
from arrows back into the host language.

Definition 3.1 (Async Point). The point in the execution of an ar-
row which requires an external event to continue is called an async
point. These events include timers (e.g. setTimeout), user events
(e.g. click, keydown), network events (e.g. Ajax calls), and certain
arrow-specific actions (discussed in Section 3.2). Concurrent exe-
cution of other arrows or host-language code may occur within a
blocked arrow’s async point.

Definition 3.2 (Asynchronicity). We say an arrow is asynchronous
if its execution contains at least one async point. A running arrow
may be canceled only if it is asynchronous, and it may be canceled
only at an async point. Canceling an arrow effectively unregisters
all of its active event handlers so that it is never notified to resume
execution when an external event occurs.

Definition 3.3 (Progress Event). An arrow may emit a progress
event if it successfully resumes execution after blocking at an async
point. These events may be explicitly suppressed (discussed in
Section 3.2).

An overview of the primitives of our library follows. The ar-
row primitives consist of constructors and combinators. Arrow
constructors create simple arrows from composition-time values.
These arrows can transform data synchronously and handle asyn-
chronous events. Arrow combinators compose a set of arrows to
form workflow that can be linear, parallel, or repeating. The de-
sign and implementation of the library is heavily inspired by both
Arrowlets [6] and ES6 Promises. We have, however, made a few
major interface changes which are discussed in Section 6.

3.1 Constructors
We provide seven arrow constructors, detailed below.

Ajax The ajax arrow, denoted ajax(c), produces a value by is-
suing a remote HTTP request. The request parameters (e.g. url,
method, headers, request body) are returned by the host-language
configuration function c. If type-checking is enabled, it is expected
that c is annotated with the input constraints of c and the expected
result from the remote server. Dynamic type-checks are inserted
following a successful response from the remote server to ensure
the shape of the data matches the annotated type.

1 var state = Arrow.ajax(zip => {
2 /* @conf :: Number
3 @resp :: { city: String , state: String } */
4 return {
5 url : '/api/v2/zip_codes/US/' + zip ,
6 dataType: 'json'
7 };
8 });

Delay The delay arrow, denoted delay(duration), passes along
its own input, unmodified, after delay milliseconds pass. This arrow
is asynchronous.

Elem The element arrow, denoted elem(selector), produces a
jQuery object (or possibly empty set of objects) matching the given
selector.

Event The event arrow, denoted event(name), takes an element
as input and produces a name-event value once that event occurs
on the given element. This arrow is asynchronous.

Lift A lifted arrow, denoted lift(f), produces a value deter-
mined by f(x), where x is the input of the arrow and f is a host-
language function. If type-checking is enabled, it is expected that
f is annotated with the input and output constraints of f . Dynamic
type-checks are inserted following the invocation of f to ensure the
return value matches the annotated type.

1 var strmul = Arrow.lift((s, n) => {
2 /* @arrow :: (String , Number) ∼> Number */
3 var acc = '';
4 for (var i = 0; i < n; i++) acc += s;
5 return acc;
6 });

Nth The nth arrow, denoted nth(n), takes a tuple of at least n
elements as input and extracts its nth element.

Split The split arrow, denoted split(n), takes a single value v as
input and converts it to an n-tuple, where each element of the tuple
is v. This arrow attempts to preclude aliasing by creating n clones
of the value v. This avoids problems with mutable references to
values held by concurrently executing arrows.

..
.

α

α

α

α ..
.

α

β

γ γ

Figure 2. Dataflow diagrams for split and nth arrows.

Note that the elem constructor can be encoded by lift, but
is provided for convenience. The split and nth constructors can
also be encoded by lift, but their types depend on a compile-time
value and cannot be annotated statically with an accurate type.

3.2 Combinators
We provide six arrow combinators, detailed below. The repeat and
noemit combinators transform a single arrow, where the remaining
five combinators transform a set of n ≥ 1 arrows. Async points are
represented in dataflow diagrams as double-slashed lines.

Seq The sequence combinator, denoted seq(a1, . . . , an), com-
poses n arrows which execute in order. The result of arrow ai is
fed into arrow ai+1. The input to a1 is the input of the combinator,
and the result of the combinator is the result of an.

This combinator is asynchronous if any arrow ai is asyn-
chronous. The set of async points of the combinator is the union of
the async points of each arrow ai.

a1 a2 . . . anτ1 τ ′n

Figure 3. Dataflow diagram for the seq combinator.

This combinator generalizes the binary combinator

(a >>> b) : (A; B)→ (B ; C)→ (A; C)

in the arrow calculus [5].

Try The try combinator, denoted try(a, as, af), attempts to ex-
ecute a with the input of the combinator. If no error occurs during
the execution of a, its output is fed into the success arrow as. Oth-
erwise, the error value is fed into the failure arrow af . The result
of the combinator is either the result of arrow as or arrow af , de-
pending on which one executed at runtime.

a as

af

τ1
β

Figure 4. Dataflow diagram for the try combinator.

This combinator is definitely asynchronous if all control flow
paths through the arrow contain an async point. This is guaranteed
only when both arrow as and arrow af are asynchronous, as arrow
a may halt with an error before its first async point.

Promise’s then and catch methods can be encoded by the
try combinator. The statement p.then(resolve) executes p and
then the callback resolve on successful execution. The statement
p.catch(reject) executes p and, if an error occurs, calls reject with
the error as input. The statement p.then(resolve, reject) executes
p and then calls either the callback resolve or reject on successful
or unsuccessful execution, respectively. The reject callback is not
executed if an error occurs in resolve.

We can encode these statements with the seq combinator, the
try combinator, and an identity arrow, id , as follows, where the
arrow a is functionally equivalent to the promise p.

p.then(s) ≡ seq(a, lift(s))

p.catch(f) ≡ try(a, id , lift(f))

p.then(s, f) ≡ try(a, lift(s), lift(f))

Any The any combinator, denoted any(a1, . . . , an), composes n
asynchronous arrows such that only the arrow that first emits a
progress event, a∗, runs to completion. This combinator executes
each arrow with the input of the combinator, in order, in a syn-
chronous loop. Once arrow ai reaches an async point, arrow ai+1

immediately begins execution. Because the loop running each ar-
row is synchronous, the event which resumes the execution of any
arrow ai will not be observed until after an begins listening for an
event. Once some arrow a∗ emits a progress event, the remaining
arrows {a1, . . . , an} \ {a∗} are canceled and the execution of a∗
continues. The result of the combinator is the result of a∗.

Similar to the behavior of the split constructor, this arrow
attempts to preclude aliasing by creating n clones of the value v.

The purpose of this combinator is to multiplex many possible
external events. Synchronous arrows cannot make progress as their
execution does not contain an async point. Therefore, synchronous
arrows make little sense in this context and are disallowed.

This combinator is necessarily asynchronous. The first async
point of the combinator is the set of first async points of each arrow
ai, which occur immediately after arrow an begins to yield. Once

..
.

..
.

..
.

..
.

a1

a∗

an

α β

Figure 5. Dataflow diagram for the any combinator.

arrow a∗ resumes execution, each async point of a∗ is also an async
point of the combinator.

The result of this combinator differs from the result of the
Promise.race method. The former uses the value of the arrow
that makes first progress where the later uses the value of the
promise which rejects or resolves first. This behavior of the any
combinator is more useful when each arrow contains multiple
async points, and the progress of any of them is enough to choose
a branch of execution. Then, the other arrows may be canceled to
improve performance and minimize asynchronous interference.

NoEmit The no-emit combinator, denoted noemit(a), suppresses
the emission of progress events from a. This combinator creates an
additional async point (and emits a progress event) after a finishes
execution. Although a emits no events, it can still be preempted or
canceled at its suppressed async points.

We can simulate the semantics of the Promise.race method
(with added cancellation of slow arrows) by applying the noemit
combinator to the arguments of the any combinator, where the
arrow ai is functionally identical to the promise pi.

race(p1, . . . , pn) ≡ any(noemit(p1), . . . , noemit(pn))

The pairing of these combinators appear much more expres-
sive than either the any combinator or the Promise.race method
alone. As an example, consider two arrows representing the halves
of a game, game1 and game2, where each arrow is composed of
a non-trivial sequence of user interactions. A time-limit to the first
portion of the game can be encoded the following.

any(delay(limit), seq(noemit(game1), game2))

Here, the delay arrow will register a listener for a timer event
and immediately yield, where game1 begins to execute. If the
timer runs out before game1 finishes, then game1 is canceled at
its next async point. If game1 finishes before the timer runs out,
then the timer is canceled and the execution path of any continues
unobstructed towards game2.

All The all combinator, denoted all(a1, . . . , an), composes n
arrows that execute concurrently. This combinator begins executing
each arrow, in order, in a synchronous loop. Once arrow ai com-
pletes or reaches an async point, arrow ai+1 immediately begins
execution. Once all arrows have been started, they may progress
through their execution in any order until they all complete, at
which point the combinator completes.

The input to the combinator is an n-element tuple, where the
input of each arrow ai is the ith element of the tuple. The result of
the combinator is also an n-element tuple, where the ith element of
the tuple is the result of arrow ai.

This combinator is asynchronous if any arrow ai is asyn-
chronous. The set of async points of the combinator is the union of
the async points of each arrow ai.

a1

..
.

..
.

a2

an

(τ
1
,τ

2
,.
..
,τ

n
)

(τ
′ 1
,τ
′ 2
,.
..
,τ
′ n
)

Figure 6. Dataflow diagram for the all combinator.

We can construct a combinator equivalent to the unary combi-
nator

first : (A; B)→ (A× C ; B × C)

in the arrow calculus [5] using this combinator and an identity
arrow:

first a ≡ all(a, id)

Repeat The repeat combinator, denoted repeat(a), executes the
arrow a at least once. The input of the combinator is fed into a.
The result of a must be a tagged union of the form

{ "repeat": rep, "value": val }

where rep is either true or false. When rep = true, the
combinator reinvokes itself with the value val as input. Otherwise,
the combinator halts, resulting in the value val .

aτ1 τ3
τ2

Figure 7. Dataflow diagram for the repeat combinator.

This combinator creates an async point following each invoca-
tion of the arrow a. This async point may progress immediately.
This async point enables preemption and cancellation between iter-
ations, and prevents synchronous arrows from looping indefinitely.

3.3 CPS Encoding
Arrows are implemented in continuation-passing style (CPS). Each
arrow has an associated call function accepting a value argument
x, a progress object p, a continuation function k, and an error
handling function h. Instead of returning a value produced by the
arrow, it is simply passed to k (on success) or h (on error). The
progress object p is used to track async points for cancellation and
emits progress events (unless suppressed) which are observed by
the any combinator.

To demonstrate the use of the progress object p, we give the
CPS encoding for the delay constructor in Figure 8. The any
combinator creates a fresh progress object for each of its children.
When one progress object emits a progress event, its sibling arrows
are canceled. The noemit combinator creates a fresh progress
object which does not emit events.

To demonstrate the use of the error callback h, we give the
CPS encodings for the lift constructor and the try combinator
in Figure 9 and Figure 10, respectively.

1 call(x, p, k, h) {
2 const cancel = () => clearTimeout(timer);
3 const runner = () => {
4 // Emit progress event and remove canceler
5 p.advance(cancel);
6 k(x);
7 };
8

9 // Kick off event
10 var timer = setTimeout(runner , duration);
11 p.addCanceler(cancel);
12 }

Figure 8. Encoding for delay(duration).

1 call(x, p, k, h) {
2 try {
3 // Runtime type checks and parameter "spreading"
4 // sugar at this point , but omitted for brevity.
5 var y = f(x);
6 } catch (e) {
7 return h(e); // Error continuation
8 }
9

10 k(y); // Success continuation
11 }

Figure 9. Encoding for lift(f) - dynamic type-checks omitted.

1 call(x, p, k, h) {
2 // Invoke original error callback "h" if either
3 // callback "as" or "af" creates an error value.
4 // This allows nesting of error callbacks.
5 a.call(x, p,
6 y => as.call(y, p, k, h),
7 z => af.call(z, p, k, h)
8);
9 }

Figure 10. Encoding for try(a, as, af).

4. Type Inference
In this section, we introduce the type system of our arrows library.
We define the types of values which can be consumed or produced
by arrows in Section 4.1. We define the types of arrows and give
the typing rules for arrow constructors and arrow combinators in
Section 4.2.

4.1 Value Types
Given a set of named types B which includes both JavaScript
primitives (e.g. Number , Bool , String) as well as event primitives
(e.g. Elem , Event), we define the type of primitive values, denoted
b, as follows.

b ::= ι ∈ B | ι1 + · · ·+ ιn

A sum type consisting solely of named types is represented by
ι1 + · · · + ιn, where each ιi is unique. The order of the types
in a sum type is insignificant, and any permutation represents an
equivalent type. A sum type of n = 1 elements is equivalent to its
unique type.

Given an infinite set of type variables A, we define the types of
values consumed or produced by arrows, denoted τ , as follows.

τ ::= b | α, β ∈ A | > | () | 〈loop : τ1, halt : τ2〉
| [τ] | (τ1, . . . , τn) | {`1 : τ, . . . , `n : τn}

The top (any possible) type is represented by >. The unit type, (),
is fulfilled by by the Javascript value undefined. The loop type is
a tagged union represented by 〈loop : τ1, halt : τ2〉 used primarily
by the repeat combinator. An arrow a produces a value v1 of
type τ1 when it expects to be called again with v1 as an argument.

Otherwise, a produces a value v2 of type τ2, which is the final
result of the arrow. We represent this tagged union in JavaScript as
a simple object with a tag and a value field, as noted in Section 3.2.

An array type with homogeneous elements is represented by
[τ], a tuple type is represented by (t1, . . . , tn), and a record type is
represented by {`1 : τ1, . . . , `n : τn}. The order of the labels in a
record is insignificant, and any permutation of the labels represents
an equivalent type.

4.2 Arrow Types

We define the types of arrows, denoted by
∼
τ , as follows, where C

is a set of constraints of the form τ ≤ τ ′ and E is the set of types
which may be produced in exceptional cases.

∼
τ ::= τin ; τout \ (C, E)

IfC andE are both empty, τin ; τout may be written for short.
If the constraint set C is not consistent, then the type is consid-
ered malformed and the associated composition is rejected during
type-checking. The accompanying technical report [2] outlines an
algorithm for determining whether a constraint set is consistent. In
brief, the algorithm rejects constraint sets whose transitive closure
contains obvious subtyping violations.

The constrained arrow type is similar to the constrained type
τ \ C introduced by Eifrig et al. [1], where the set C contains
subtyping constraints on the type variables occurring in τ . A con-
strained type inference system generalizes unification-based infer-
ence to languages with subtyping - a feature we found is necessary
for arrow type inference.

We assume that if a constrained arrow type contains a type
variable α in τin , τout , C, orE, that the type variable is understood
to be universally quantified with respect to the arrow type, i.e.

∀α.τin ; τout \ (C, E)

Typing rules for arrow constructors and combinators appear in
Figure 11 and Figure 12, respectively. For brevity, the typing rules
have the implicit assumption that if a : τ ; τ ′ \ (C, E), then C
is consistent.

When an arrow type is used as the input of a combinator, a
unique instantiation of that type is created in order to prevent
unintended clashing of type variables. A unique instantiation of a
constrained arrow type is created by substituting the set of type
variables occurring in the type as well as the constraint set and set
of error types with a set of fresh type variables.

Rule (T-LIFT) assumes that each lifted function f is annotated
with a constrained arrow type describing the input and output types
of f , and Rule (T-AJAX) assumes that each Ajax configuration
function c is annotated with two constrained types: one describing
the input to c, and one describing the response from the remote
server. We assume the existence of an implicit function Annot(t, f)
which reads the annotation named t of the function f and produces
a unique instantiation of the type it describes.

Rule (T-NTH) shows how the nth(n) combinator selects the
nth element from a tuple with m ≥ n elements. The argument
to this combinator may be a wider tuple, as (τ1, . . . , τm) ≤
(τ ′1, . . . , τ

′
n) is a consistent constraint. Note that the application

of this rule happens at arrow composition time when n is known.

5. Discussion
We have implemented several small but non-trivial programs using
the abstractions provided by our library with type-checking enabled
during development. Among these were an implementation for the
game Memory, which requires the user to select two cards from a
grid with the same face value until all pairs of cards are selected,
and an application which demonstrates Fischer-Yates Shuffle and
Bubble Sort algorithms through timed animations.

T-LIFT
Annot(arrow , f) = τ1 ; τ2 \ (C, E)

lift(f) : τ1 ; τ2 \ (C, E)

T-AJAX
Annot(conf , c) = τ1 \ (C1, E) Annot(resp, c) = τ2 \ C2

ajax(c) : τ1 ; τ2 \ (C1 ∪ C2, E ∪ {AjaxError})

T-ELEM

elem(selector) : >; Elem
T-EVENT
event(name) : Elem ; Event

T-DELAY

delay(duration) : α; α

T-SPLIT
split(n) : α; (α, . . . , α)︸ ︷︷ ︸

n elements

T-NTH
nth(n) : (α, β, . . . , γ)︸ ︷︷ ︸

n elements

; γ

Figure 11. Typing rules for arrow constructors.

T-REPEAT
a : τ1 ; 〈loop : τ2, halt : τ3〉 \ (C, E) C′ = {τ2 ≤ τ1}

repeat(a) : τ1 ; τ3 \ (C ∪ C′, E)

T-SEQ

∀i ∈ 1..n. ai : τi ; τ ′i \ (Ci, Ei) C′ = ∪n
i=2{τ ′i−1 ≤ τi}

seq(a1, . . . , an) : τ1 ; τ ′n \ (C′ ∪
⋃
Ci,

⋃
Ei)

T-ALL
∀i ∈ 1..n. ai : τi ; τ ′i \ (Ci, Ei)

all(a1, . . . , an) : (τ1, . . . , τn) ; (τ ′1, . . . , τ
′
n) \ (

⋃
Ci,

⋃
Ei)

T-ANY
∀i ∈ 1..n. ai : τi ; τ ′i \ (Ci, Ei), C

′
i = {α ≤ τi, τ ′i ≤ β}

any(a1, . . . , an) : α; β \ (
⋃
C′i ∪

⋃
Ci,

⋃
Ei)

T-NOEMIT

a :
∼
τ

noemit(a) :
∼
τ

T-TRY
∀i ∈ 1..3. ai : τi ; τ ′i \ (Ci, Ei) C′ = {τ ′1 ≤ τ2, τ ′2 ≤ β, τ ′3 ≤ β} ∪ {τ ≤ τ3 | τ ∈ E1}

try(a1, a2, a3) : τ1 ; β \ (C′ ∪
⋃
Ci, E2 ∪ E3)

Figure 12. Typing rules for arrow combinators.

During this time, we observed a large number of instances
where the type system forbid us from composing arrows illegally.
In many cases the composition was illegal in a way that was trivial
to fix yet non-obvious to discover. For example, our game Memory
used an arrow with the type selectOne :: Elem ; (), which
was meant to be executed twice in a row with the same input.
The intuition when composing such arrows is to simply seq them
together, but this unfortunately causes a type clash between the first
and second invocations. The correct solution is to remember the
input to the first invocation, and use it as the input of the second
invocation. This became a common idiom and was encoded as a
derived combinator in our API.

remember(a) ≡ seq(split(2), all(a, id), nth(2))

Annotation Burden The annotation burden required by devel-
opers seems to be minimal. Our implementation of Memory (151
lines of ES6) required only eight annotations in total, but our type-
checker inferred the type of 126 arrows at startup. This number
is not surprising if we consider that many combinators (such as
the remember combinator defined above) are built from the foun-
dational combinators discussed in Section 3. Similarly, our imple-
mentation for the sorting and shuffling animation (126 lines of ES6)
required only four annotations, but types for 124 arrows were in-
ferred.

Inference Overhead We measured the runtime overhead of arrow
type inference. We used the Ajax example from Section 2 as well as
the programs described in this section. Measurements are averaged
over 1000 runs in Chrome (V8), with warmup runs discarded.

Application # Arrows Disabled (ms) Enabled (ms)
Ajax 13 0.125 0.905

Shuffle 62 0.837 3.957
Shuffle & Sort 124 1.638 8.118

Memory Game 126 1.566 10.989

We also constructed a benchmark application which allows us
to arbitrarily adjust the size of arrow types. We used an arrow with
a type of the form

{fi : αi}; {fi : α′i} \ ({αi ≤ α′i})
and composed it with itself it 1000 times. This requires inferring
a large number of intermediate arrow types, each with a constraint
set size linear to the size of the its input.

We measured the runtime overhead of arrow type inference
with a variable number of fields in the arrow’s type. Based on
these results, it appears that arrow type inference is linear with the
number of arrows and subquadratic with the size of the arrow type.
We expect arrow type sizes to remain small as the user annotates
only the fields of the object which are used by the arrow, and arrows
types are aggressively simplified during inference.

Fields 1 10 20 30 40 50
Time (ms) 1.10 3.39 6.88 11.82 17.32 25.48

We measured the overhead of the runtime type-checks at the
border of lifted functions. Without runtime type-checks, the arrow
executes in an invariant 1.762ms. There are 1024 dynamic type
checks (the number of lifted arrows) performed in a single run.
Based on these results, it appears that runtime type-checks have an
overhead which grows linearly with both the number of dynamic
type checks as well as the size of the type being traversed.

Fields 1 10 20 30 40 50
Overhead (ms) 0.25 1.24 2.11 3.07 4.06 4.81

It is important to keep in mind that application using these ab-
stractions are asynchronous and often blocked waiting for user or
remote server responses, which vastly dominate the runtime of an
application. We find this performance overhead during develop-
ment to be negligible.

6. Related Work
Arrows Arrows [5, 7, 8] were first formalized as a generalization
of monads [11]. An arrow of type (a b c) represents a computa-
tion with input of type b delivering a value of type c. Our lift
constructor and the combinators seq and all encompass the three
operations which define arrows.

Arrowlets Arrowlets is a JavaScript library for using arrows [6],
providing programs the means to elegantly structure event-driven
web components that are easy to understand, modify, and reuse.
The implementation of our arrows library was heavily inspired by
the continuation-passing style used by Arrowlets, as well as the
asynchronous semantics of the combinators it provides.

Regarding execution semantics only, there are two major dif-
ferences between our arrows library and Arrowlets. First, we have
generalized binary combinators to support n arrows, leading to
code which favors generalized n-tuples over simple pairs. Second,
we have altered the encoding of arrows to carry along an error con-
tinuation in addition to the normal-path continuation. This allowed
us to add the try combinator, which subsumes the semantics of
ES6 Promises.

ES6 Promises Promises allow a sequence of callbacks to be
chained together, flattening the dreaded ‘pyramid of doom’ into
a sequence of promise then calls. Promises also provide a means
of error handling, where the then method accepts an optional error
callback.

Our arrows library also encode the core mechanism of promises,
but there are some obvious differences in execution semantics.
For one, when a promise object is created it attempts to resolve
immediately. If a promise object is composed with a callback after
its resolution, it simply forwards the memoized result. Arrows
separate composition and execution behind an explicit run method.
This allows an arrow to be called multiple times, like a regular
function, and enables features such as the repeat combinator.
Promises place emphasis on the values which they proxy, where
arrows place emphasis on the computation. It would be trivial to
adapt our arrows library to support the lazy nature of Promises with
the addition of a memoizing combinator.

Promises also implement two methods which are strongly
related to the arrow combinators presented here. The method
Promise.all(ps), similar to the all combinator, takes an iter-
able of promises, ps, and resolves once each promise resolves or
rejects if any promise rejects. Its resolved value is an array of the
resolved values of each promise. The method Promise.race(ps),
similar to the any combinator when the arrow inputs are wrapped
in noemit, takes an iterable of promises, ps, and resolves once any
promise p resolves or rejects once any promise p rejects. The value
of the promise is the value of the first resolved arrow. Unlike the
any combinator, Promise.race does not abort the execution of
the remaining arrows. We believe the semantics of the any combi-
nator to be more useful in practice.

Coincidently, because we can simulate promise semantics so
closely with arrows, our typing judgments can also apply almost
directly to a promise library. However, type-checking with Arrows
is much more elegant than with Promises because the composition
time and execution time of an arrow has a clear delineation, where
a promise may begin immediately following its creation.

Promises and Arrowlets attack the problem of callback compo-
sition in similar ways, but provide a disjoint set of orthogonal fea-
tures. Arrowlets provide a means to abort an asynchronous opera-
tion, where Promises follow a fire-and-forget convention. Promises
provide a means of catching an error, where Arrowlets focus only
on happy-path composition. Our implementation of arrows chooses
to support both sets of features.

Factors Factors [10] are another interactivity abstraction. A fac-
tor represents a state of a program which can be queried either
synchronously or asynchronously. A synchronous query takes a
prompt value and blocks until a response value is produced. An
asynchronous query takes a prompt value and returns immediately,
but produces a future factor which serves as a handle of the com-
putation. Because queries return a continuation factor, state is ex-
plicitly tracked. Factors require an affine type system to ensure that
future factors are not used more than once.

7. Conclusion
We have presented an arrows library which encodes sematics sim-
ilar to ES6 Promises and a composition-time type-checker which
enables type-directed development. We believe this tool greatly re-
duces the friction of development using a functional style in a lan-
guage with no compile-time checks.

Future Work We intend to explore additional methods of ‘static’
(composition-time) analysis to provide greater confidence in cor-
rect arrow compositions. We are currently exploring state analysis
with interesting results.

Acknowledgments
We thank John Boyland for his comments on the draft.

References
[1] J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively

constrained types and its application to oop. Electronic Notes in
Theoretical Computer Science, 1:132–153, 1995.

[2] E. Fritz and T. Zhao. Type inference of asynchronous arrows in
JavaScript. Technical report, University of Wisconsin - Milwaukee,
2015.

[3] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript.
In ECOOP 2010–Object-Oriented Programming, pages 126–150.
Springer, 2010.

[4] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots,
and functional reactive programming. In Advanced Functional Pro-
gramming, pages 159–187. Springer, 2003.

[5] J. Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67–111, 1998.

[6] Y. P. Khoo, M. Hicks, J. S. Foster, and V. Sazawal. Directing
JavaScript with arrows. In Proceedings of the 5th Symposium on Dy-
namic Languages, DLS ’09, pages 49–58, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-769-1.

[7] S. Lindley, P. Wadler, and J. Yallop. The arrow calculus. Journal of
Functional Programming, 20(01):51–69, 2010.

[8] S. Lindley, P. Wadler, and J. Yallop. Idioms are oblivious, arrows are
meticulous, monads are promiscuous. Electronic Notes in Theoretical
Computer Science, 229(5):97–117, 2011.

[9] S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for
JavaScript. In Programming languages and systems, pages 307–325.
Springer, 2008.

[10] S. K. Muller, W. A. Duff, and U. A. Acar. Practical abstractions
for concurrent interactive programming. Technical report, Carnegie
Mellon University, 2015.

[11] P. Wadler. The essence of functional programming. In Proceedings
of the 19th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 1–14. ACM, 1992.

[12] Z. Wan and P. Hudak. Functional reactive programming from first
principles. In ACM SIGPLAN Notices, volume 35, pages 242–252.
ACM, 2000.

	Introduction
	Example
	Arrows
	Constructors
	Combinators
	CPS Encoding

	Type Inference
	Value Types
	Arrow Types

	Discussion
	Related Work
	Conclusion

