
Typing and Semantics of
Asynchronous Arrows in JavaScript

Eric Fritz, Tian Zhao
University of Wisconsin – Milwaukee

Abstract

Asynchronous programs in JavaScript using callbacks and promises are difficult

to write correctly. Many programs have subtle errors due to the unwanted

interaction of event handlers. To fix such errors, the programmer is burdened

with explicit registration and de-registration of event handlers. This produces

fragile code which is difficult to read and maintain.

Arrows, a generalization of monads, are an elegant solution to asynchronous

program composition. In this paper, we present the semantics of an arrow-based

DSL in JavaScript which can encode asynchronous programs as a state machine

where edge transitions are triggered by external events. To ensure that arrows

are composed correctly, we provide an optional type checker that reports errors

before the machine begins execution.

1. Introduction

Event programming is prevalent in JavaScript. As the lingua franca of the

Web, it is responsible for driving a huge amount of user-interactive Web applica-

tions. Because JavaScript is commonly executed in a single thread, blocking or

long-running computations can often cause the page or entire browser to appear

unresponsive. As a result, JavaScript programs are written in an event-driven

style where programs register callback functions with the event loop. A call-

back function is dispatched by the event loop when an external event occurs, and

control returns to the event loop once a callback function completes execution.

Preprint submitted to Science of Computer Programming August 25, 2017

Heavy use of callbacks make control flow difficult to trace. Application

logic becomes intimately mixed with sequencing logic. A single unit of ap-

plication code may no longer be confined to one easily-readable function, but

split arbitrarily far across a number of functions. This greatly decreases code

understandability and maintainability.

The introduction of promises to JavaScript demonstrates a desire to reduce

the complexity of callback-driven programs. Promises allow callbacks to be

chained instead of nested, regaining some imperative flow of control (see Sec-

tion 2.1 for a concrete comparison between callbacks and promises). While

promises can help avoid nested callbacks, promises alone cannot express the

same semantics as callbacks without relying on external state and manual syn-

chronization. For example, Promise.race([p1, p2]) causes the promises p1

and p2 to execute concurrently such that the result of the race is that of the

faster promise. However, both p1 and p2 run to completion, which can be prob-

lematic if the slower one has undesirable side effect such as loading a large file.

To cancel the slower promise, p1 and p2must coordinate through shared state to

indicate completion of the first-to-resolve promise, which is not an improvement

over callbacks.

In addition, promises cannot encode general recursion without relying on re-

cursive function calls. This diminishes the clarity of promise-based programs as

readers have to switch between higher-level constructs of promises to lower-level

function calls when trying to understand the asynchronous dataflow. We ad-

dress these problems with a different abstraction for asynchronous composition,

arrows, introduced in Section 1.1.

Both callback and promise compositions are error-prone to compose as JavaScript

lacks the ability to determine statically when a callback sequence or promise

chain is illegal. Such compositions often crash or lead to subtle behavioral is-

sues once invoked. Frustratingly, the source location which displays incorrect

behavior is often completely independent of the source location of the root cause,

making the associated stack trace less than helpful. These errors force the devel-

oper to trace the execution path backwards from the source of a runtime error,

2

continuation-function by continuation-function, until the erroneous composition

presents itself. Despite the benefits, this seems to leave the developer no better

off than using callbacks during debugging.

1 function lookup(key) {

2 return new Promise ((resolve , reject) => {

3 if (key in cache) { resolve(cache[key]); }

4 else { reject(key); }

5 });

6 }

7

8 let resp = lookup(key).catch(key => makeRequest(key).then(resp => {

9 cache[key] = resp;

10 }));

11

12 resp.then(items => handleFirst(items [0]));

Figure 1: A (malformed) program using promises to cache remote server responses.

The code in Figure 1 demonstrates such an illegal composition using promises.

The function lookup returns a promise that resolves with a value from a cache (if

it exists) or rejects with the key. When this promise rejects, the error handling

function is invoked in order to make a remote server request which populates

the cache with the result. Although the promise chain is sequenced correctly, it

contains an error which may not be immediately obvious to the reader. Because

the function that populates the cache returns no value, the promise resp will

resolve to the value undefined. In this example, the illegal composition results

in an index out of bounds exception on line 12, when the actual error is in the

construction of the promise chain. One solution to this problem requires that

the function that populates the cache also returns the cached value. Another

solution requires that the promise returned by makeRequest be returned with-

out modification. In this solution, the function populating the cache would be

sequenced to the promise internally for side-effect only.

We address this composition issue with respect to arrows with an optional

type checker to detect illegal use before execution, discussed in detail in Sec-

3

tion 4. Section 2 Figure 6 presents a similar (but typed) program using arrows.

1.1. Arrows

In this paper, we introduce an arrows library for composing asynchronous

JavaScript programs. Arrows are easier to use than callbacks and promises as

they enable thread-like semantics for event-based programming with the ability

to properly cancel an asynchronous computation (rather than just ignoring its

results as promises do).

Arrows [1] are a generalization of monads [2], which enable flexible compo-

sition of actions on a particular type of data. A monad m includes a return

operator that turns a value of type a into a monad of type m a and a bind

operator that combines a monad of type m a and a function a → m b to return

a monad of type m b. Monads are considered a flexible design for combinator

libraries. For example, the Maybe monad can be used to define combinators

so that programs composed with the combinators can handle errors implicitly

through the bind operator.

While Monad enables flexible combinator libraries, it does have some lim-

itations. For instance, Swierstra and Duponcheel [3] defined efficient parser

combinators, with the type Parser s a that has a static and a dynamic com-

ponent, to match strings from LL(1) grammars. The static component allows a

choice combinator to make a decision immediately on which parser to invoke.

Similar parsers that do not consider lookahead must retain the input (which

has the potential to be very large) while invoking one side of the choice as they

cannot determine whether a parser will match or fail ahead of time.

Unfortunately, as John Hughes showed [1], it is not possible to define the

bind operator for their parser combinators, which has the following type.

Parser s a→ (a→ Parser s b)→ Parser s b

The static component of the result depends on the static components of both

inputs, but the second parser’s static component is hidden behind a function

requiring a value of type a.

4

Through a reformulation of the required type signatures, arrows generalize

over monads so that the static properties of the composed arrows are readily

available. Arrows include a return operator (also called lift) that turns a

function of type b → c into an arrow of the type a b c, where a is a type

constructor applied to the parameters b and c, a seq operator for sequencing

arrows of type a b c and a c d to result in an arrow of type a b d, and a first

operator, which takes an arrow of type a b c and convert it to an arrow of type

a (b, d) (c, d) so that value of type d can be piped through the arrow unchanged.

Our design is motivated by Arrowlets [4], which has demonstrated an elegant

solution to composing callback functions by wrapping them in opaque units

of execution (arrows) using continuation functions. Arrows are suitable for

composing continuations that represent event callbacks in JavaScript, where

the progress of the event callbacks must be monitored. Arrows, unlike promises

and callbacks, have a distinct composition phase and an execution phase. An

arrow is composed in-full before its invocation is kicked off by calling its run

method. The portion of the program which executes before the run method

is called is referred to as composition phase, and the remaining portion of the

program is referred to as execution phase.

While both phases occur at runtime, the actual computation including the

asynchronous code only starts at the execution phase. Figure 2, which presents

the construction of an arrow encoding the game Whack-A-Mole, shows why

composition is a runtime concept rather than a static (compilation-time) con-

cept. In this example, nine arrows are created, one controlling the timing of

each mole (details omitted), which runs concurrently. The difference between

the nine arrows is only the element on which they operate, which has been fac-

tored out as a parameter to the arrow factory function. If arrow composition

was a static concept, the host language cannot be meaningfully leveraged in this

way.

Because of this separation, it is possible to detect errors after an arrow has

been composed but before its actual execution starts. To this end, we have

developed an optional type checker which infers and attaches a type to every

5

1 function popup(selector) {

2 return Arrow.seq([/* omitted */]);

3 }

4

5 var moles = [];

6 for (var i = 1; i <= 9; i++) {

7 moles.push(popup('#mole' + i));

8 }

9

10 Arrow.all(moles);

Figure 2: An arrow factory function showing why composition phase is not static.

arrow during the composition phase describing its input and output constraints

and forbids the composition of two arrows that are not type-composable. This

reduces a rather large class of errors during composition related to input/output

clashes and requires only that the user adds an annotation (in the form of a

JavaScript comment) to functions which are lifted into arrows.

Arrows and promises share a large enough core set of semantics that our

typing rules can also apply almost directly to a promise library. Unfortunately,

promises evaluate as soon as they are defined and there is no separation between

the definition of a promise and its evaluation. An equivalent type checker for

promises would either require a static pre-processing step (which would require

not only knowledge of promise semantics, but the semantics of JavaScript as

well), or would immediately devolve into inspecting its argument types during

runtime. Such a type system would not be beneficial, as it would not detect

composition errors before the promise chain executes.

This type checker runs in pure JavaScript at program runtime and thus

requires no pre-processing step. While the type checker does not find errors

statically, it does find errors prior to the arrow execution phase. More precisely,

the type checker ensures that the arrows are composed correctly based on the

arrow’s types so that the argument passed to a lifted function is always com-

patible with the corresponding parameter type of the function. This technique

effectively moves the source of errors from the point where an error may be ob-

6

served to the point where an erroneous composition occurs. In a sense, the type

checking is static relative to the arrow execution. If typing errors are detected,

users can quickly identify the illegal arrow compositions and revise accordingly.

Since this process does not require actual asynchronous computation, the de-

velopment of arrows can often be less time consuming than that of promises.

The type checker may also be disabled, returning the program to the original

runtime semantics without dynamic type checks.

The type checker infers the types of primitive arrows and their compositions.

The domain and the range of arrow types are limited to primitive types, type

variables, and immutable tuple, record, array, and variant types. This set of

types is sufficient for the purpose of expressing interesting asynchronous behav-

ior so that is not necessary to consider more complex issues such as mutable

object fields, prototypes, and higher order functions. Since we require type

annotations for each lifted function and perform (optional) run-time checks to

ensure that the function return value matches the annotated type, we do not

need to perform type-inference within the body of the lifted function.

1.2. Our Contributions

The main contributions of this paper are

1. an encoding of arrows which handles asynchronous errors in a manner

similar to ES6 Promises,

2. an optional type system to aid developers with type-directed composition

of asynchronous arrows, and

3. a formal semantics that describes the implementation of the asynchronous

arrows library and its relation to JavaScript’s single-threaded event loop.

The remainder of this paper is organized as follows. Section 2 provides

a motivation for using arrows as a tool for asynchronous composition, and a

motivation for inferring types of the asynchronous machine produced by arrow

composition. Section 3 introduces the arrow constructors and combinators in

7

our library and discusses their runtime semantics and encoding. Section 4 pro-

vides details of the type inference system and presents typing rules. Section 5

describes formal semantics of asynchronous arrows. Section 6 discusses a sound-

ness proof for arrow type inference. Section 7 discusses development time and

runtime costs of the library. Section 8 presents related work and Section 9 con-

cludes. Our arrows library, the type checker, and some sample applications are

freely available1.

2. Motivation

In this section, we provide motivation for using arrows as a utility to compose

asynchronous functions as well as a motivation for annotating such compositions

with types.

In the following, we illustrate compositions with code snippets using the

arrows library. The details of the methods are explained in detail in Section 3.

For now, it should be sufficient to understand that LiftedArrow converts a

function into an arrow, seq chains two arrows in sequence, any executes two

arrows in parallel and cancels the execution of the slower of the two, fix allows

an arrow to reference itself recursively, catch executes the second arrow when an

exception occurs in the first, and on blocks until an event occurs on an element.

An arrow begins execution only after its run method is invoked. We encourage

readers to reference Section 3 in order to understand the complete composition.

2.1. Why Arrows?

To illustrate the utility of arrows as a composition utility, we give an imple-

mentation of a small program using only callbacks, using promises, and using

arrows. Each implementation assumes the existence of the function makeURL,

which returns a path on a remote server, and the function handle, which pro-

cesses results from a remote server.

1http://arrows.eric-fritz.com

8

http://arrows.eric-fritz.com

The program waits for the user to click an element with the document ID

fire. Then, an Ajax request will fire after a one-second delay. Once the remote

server responds, the results are passed to the handle function. Once the results

are handled, the program halts. If the user clicks the element a second time

before the results are handled, the results of the timer and Ajax request are

discarded and a new timer begins.

The callback and promise solutions use the jQuery method one, which binds

an event handler to an event which fires only once (unlike the jQuery method

on, which will not de-register the handler after the first invocation).

1 function inner() {

2 var clicked = false;

3 var responded = false;

4

5 setTimeout (() => {

6 if (clicked) return;

7 $.ajax({

8 'url': makeURL(),

9 'success ': response => {

10 if (clicked) return;

11 responded = true;

12 handle(response);

13 }

14 });

15 }, 1000);

16

17 $('#fire').one('click ', () => {

18 if (responded) return;

19 clicked = true;

20 inner ();

21 });

22 }

23

24 $('#fire').one('click ', inner);

Figure 3: A solution using only callbacks.

Callbacks. Figure 3 shows a complete implementation of this program using

only callbacks. We define the method inner as the computation to occur after

9

a click event. This method is called once from outside in order to kick-off the

computation and from inside on additional click events. The flag clicked is set

to true on an additional click event and will prevent the results of the previous

Ajax call from being handled. If an Ajax response is received and the clicked

value has not been set to true, then the results are sent to the handle method

and the program halts. The flag responded is set to true directly before handle

is called. Additional click handlers will no-op if the responded flag has been set

to true. Both flags are necessary in order to prevent unwanted behavior from

occurring – otherwise, handle maybe called twice, or clicks may be registered

after the program has ended.

1 function inner() {

2 var p1 = new Promise ((resolve , reject) =>

3 setTimeout(resolve , 1000)). then (() => $.ajax({ 'url': makeURL () }));

4

5 var p2 = new Promise ((resolve , reject) =>

6 $('#fire').one('click ', reject));

7

8 Promise.race([p1, p2]). then(handle , inner);

9 }

10

11 $('#fire').one('click ', inner);

Figure 4: A solution using promises.

Promises. Figure 4 shows a complete implementation of this program using

promises. Promise p1 begins a timer and resolves with the Ajax response once

it is received from the remote server and promise p2 rejects when an additional

click is detected. Both promises race so that the first resolved value is acted on

and the result of the slower promise is silently discarded. If the result of the

race is a rejection, then the inner method is called recursively; otherwise, the

Ajax response is sent to the handle function and the program halts.

Arrows. Figure 5 shows a complete implementation of this program using ar-

rows. The AjaxArrow constructed on line 7 describes a computation that makes

10

1 Arrow.fix(a => Arrow.seq([new ElemArrow('#fire'), Arrow.on('click ',

2 Arrow.any([

3 a,

4 Arrow.seq([

5 Arrow.noemit(Arrow.seq([

6 new DelayArrow (1000) ,

7 new AjaxArrow (() => { 'url': makeURL () })

8])),

9 handle

10])

11])

12)])). run();

Figure 5: A solution using Arrows.

a request to the remote server and yields the response. A reference to the re-

cursive parameter a within the fix call effectively replays the arrow execution

from the beginning. The arrow is immediately executed after composition via

the run method.

The arrow begins by retrieving an element with the document ID fire and

waits for a click event. Once the event occurs, the arrow re-invokes itself (line 3)

to register another click handler. Control is then yielded to the arrow defined on

lines 4-10 which sequences a timeout, the ajax arrow, and the handle function.

The any combinator will wait for either the click event or the Ajax response

to occur. Once one event occurs, the event handlers of the other branch are

de-registered and the winning branch continues execution.

Callback Discussion. The solution using promises and the solution using arrows

are both higher-level than the solution using only callbacks. In order to ensure

that only one click handler and only one Ajax request is in-flight at a time, the

solution using only callbacks resorts to using function-local flags which are used

to determine if an event should be ignored. An alternate solution would keep a

reference to the timer and the XMLHttpRequest object so that the clearTimeout

function and the request’s abort method could be used to cancel event handlers

eagerly instead of lazily – this implementation would remain as explicit as the

11

one given in Figure 3. The solution using promises and the solution using

arrows, on the other hand, discards the branch containing the callback for the

slower event implicitly. The semantics of Promise.race and Arrow.any already

encode this behavior in a reusable way.

Promise Discussion. The promise and arrow solutions are similar, but the arrow

solution is more efficient. The Promise.race method resolves to the faster

(first to resolve) promise, but the remaining promises remain active. On the

other hand, the Arrow.any combinator de-registers the event callbacks from

the slower arrows once one arrow makes sufficient progress. This effectively

cancels branches of computation whose results will not be used.

While this difference in semantics is a matter of superfluous (but silent) re-

mote requests in this program, it is a matter of correctness in others. Suppose

that two concurrent branches of computation are both waiting on an event to

proceed – if the computation remaining on these branches is user-observable,

it may be incorrect to allow one to continue execution while discarding its re-

sult. Unlike arrows, ES6 Promises do not offer a mechanism for cancellation.

Section 3.2 describes in greater detail the ability for arrows to offer semantics

equivalent to Promise.race.

2.2. Why a Type System?

To illustrate the utility of our type inference tool, consider the example in

Figure 6 which wraps an arrow with a cache. The function makeCached builds

an arrow that first checks for the existence of a key in a globally scoped object.

If this key exists, then the arrow returns this value immediately. Otherwise, the

key does not exist in the cache and the arrow is invoked to calculate a value

which is placed in the cache before returning.

Functions which are lifted into arrows are generally annotated with a type. If

a function does not have an annotation we assume that the function can accept

any value and may return any value. The arrow resulting from makeCached

first invokes the lifted function lookup, which will either return a value from

12

1 var cache = {};

2 let lookup = new LiftedArrow(key => {

3 /* @arrow :: α ∼> β \ ({}, { α }) */

4 if (key in cache) { return cache[key]; }

5 else { throw key; }

6 });

7

8 let store = new LiftedArrow ((key , value) => {

9 /* @arrow :: (γ, δ) ∼> > */

10 cache[key] = value;

11 });

12

13 function makeCached(arr) {

14 return Arrow.try(lookup , id, Arrow.seq([

15 arr.carry(),

16 store.remember(),

17 new NthArrow (2)

18]));

19 };

Figure 6: An example arrow composition caches results of a wrapped arrow. The type anno-

tations have the form of τ1 ; τ2 \ (C,E), where τ1 and τ2 are input and output types, C

is a set of type constraints on τ1 and τ2, and E is a set of types for possible exceptions. We

omit (C,E) when there is no type constraints or exceptions. α, β, γ, and δ range over type

variables and > indicates no useful return value.

the cache on cache hit or throw the key on cache miss. On cache miss, the

exception value is caught and fed into arr and execution continues on the error-

handling branch.

This solution is general in the sense that no concrete type is listed for either

the keys or values within the cache – these types are inferred based on the input

and output type of the arrow being wrapped.

The derived combinator carry wraps an arrow so that its input is returned

along with the output (e.g. it converts an arrow of type α; β to α; (α, β)).

The derived combinator remember wraps an arrow so that its input is returned

in place of its output and the arrow is executed simply for side-effects (e.g. it

converts an arrow of type α; β to α; α).

Notice that the type of store requires a key of type γ and a value of type

13

δ as input, but arr returns only a value of some unknown type. To give store

the correct input, we need to remember the input of arr. Similarly, store does

not return any usable value, so we must remember its output as well in order

to extract the value placed in the cache.

If, instead, arr and store were sequenced directly, e.g. if the carry combi-

nator was incorrectly omitted, it would result in a (rightful) type-clash. Such a

composition would calculate a value but store undefined in the cache under the

wrong key, resulting in a likely cryptic error later in the execution of the pro-

gram when undefined is read from the cache. If type checking was enabled, the

direct sequencing of arr and store would not type check, giving the developer

immediate feedback that the arrows are ill-composed. This composition-time

failure has two advantages over the runtime failure, as follows.

1. The location of the error now occurs at the root cause (where the illegal

composition occurs) rather than at the first symptom.

2. The text of the error message contains the inferred types of the arrows

being composed as well as the reason the composition is not type-safe.

As a concrete example, if arr has type String ; [String] then the following

error message is given at composition time. This gives the user precisely the

types which are incompatible.

Cannot seq arrow: Inconsistent constraints {[String] ≤ (γ, δ)}

It is worth noting that the symptom of such an error, without type checking,

can occur arbitrarily far away from the sequencing error. Such symptoms may

only be observable under certain conditions (after a specific sequence of inter-

actions) and in subtle ways (not causing a crash, but incorrect values). Finding

such errors before they occur is certainly beneficial during development.

In the following section, we describe the full set of core arrows which are

used to create complex applications, as seen above.

14

3. Arrows

An arrow is a composable, opaque unit of execution. An arrow may receive

a value as an argument as it begins execution. An arrow may also produce a

value, but because an arrow may execute in an asynchronous manner, this value

may only be consumed by another arrow.

We embed a typed domain-specific language based on arrow operations in

JavaScript. The host language may lift a function into an arrow, run an

arrow, or cancel a running arrow. Arrows are meant to replace operations in

JavaScript which were primarily asynchronous or callback-driven. As a result,

values cannot flow from an arrow back into the host language.

An overview of the primitives of our library follows. The Arrow primi-

tives consist of constructors and combinators. Arrow constructors create simple

arrows from composition-time values. These arrows can transform data syn-

chronously and handle asynchronous events. Arrow combinators compose a set

of arrows to form workflow that can be linear, parallel, or recursive. The design

and implementation of the library is heavily inspired by both Arrowlets [4] and

ES6 Promises. We have, however, made a few major interface changes which

are discussed in detail in Section 8.

Below, we define some concepts necessary for the discussion of arrows which

are executed concurrently (specifically, in relation to the any and noemit com-

binators). Each arrow described below will explicitly state the location of its

async points, if any, and whether or not it is asynchronous.

Definition 1 (Async Point). The point in the execution of an arrow which

requires an external event to continue is called an async point. These events

include timers (e.g. setTimeout), user events (e.g. click, keydown), network

events (e.g. Ajax calls), and certain arrow-specific actions (discussed in Sec-

tion 3.2). Concurrent execution of other arrows or host-language code may

occur within a blocked arrow’s async point. A running arrow may be canceled

only at an async point, as cancellation is effectively the de-registration of its

active event handlers so that it never resumes execution after an external event.

15

Definition 2 (Progress Event). An arrow may emit a progress event if it

successfully resumes execution after blocking at an async point. Listeners can

subscribe to these events to know when an arrow is making progress. These

events may be explicitly suppressed (as discussed in Section 3.2).

Definition 3 (Asynchronicity). We say an arrow is asynchronous if it contains

at least one async point on every possible execution path through the arrow. If

an arrow contains an async point which may be avoided at runtime (e.g. via the

try combinator), then it is not considered asynchronous.

3.1. Constructors

We provide seven arrow constructors (lift, delay, domelem, domevent,

ajax, nth, and split) detailed below. These constructors were chosen to form

an interesting and practical core on which our formalism is based and is by no

means an exhaustive list of possible constructors. Additional constructors are

likely to closely resemble a constructor already described here – for example,

a query constructor, closely resembling the ajax constructor, might create an

arrow running on the server-side which runs a query on a database.

Lift. A lifted arrow, denoted lift(f), produces a value determined by f(x),

where x is the input of the arrow and f is a host-language function. A concrete

example is given in Figure 7.

1 var strmul = Arrow.lift((s, n) => {

2 /* @arrow :: (String , Number) ∼> String */

3 var acc = '';

4 for (var i = 0; i < n; i++) {

5 acc += s;

6 }

7 return acc;

8 });

Figure 7: An example of a function lifted into an arrow.

A lifted arrow is synchronous, and we furthermore assume the body of a

lifted function executes in a synchronous manner as any asynchronous behavior

16

within the lifted function is doing so outside of the arrow execution machine.

This can be well-defined behavior, but these events will not produce observable

async points, and a value produced asynchronously cannot be injected back into

the arrow.

If type checking is enabled, it is expected that f is annotated with the input

and output constraints of f . Dynamic type checks are inserted following the

invocation of f to ensure the return value matches the annotated type.

Delay. The delay arrow, denoted delay(d), passes along its own input, unmod-

ified, after d milliseconds pass. This arrow is asynchronous and emits an async

point immediately after its internal timer fires.

Document Element. The element arrow, denoted domelem(selector), produces a

jQuery object matching the given selector. A jQuery object denotes a (possibly-

empty) set of objects, so that each invoked method is delegated to the elements

of the set.

Document Event. The event arrow, denoted domevent(name), takes a DOM

element as input and produces an event value specific to the action, denoted by

name, after that event occurs on the given element. This arrow is asynchronous

and emits an async point immediately after the event occurs.

In implementation, the arrow domevent(click) arrow takes a jQuery object

as input and returns a click event once any of the elements in the input element

set are clicked by the user.

Ajax. The Ajax arrow, denoted ajax(c), produces a value by issuing a remote

HTTP request. The request parameters (e.g. url, method, headers, request body)

are returned by the host-language configuration function c. This arrow is asyn-

chronous and emits an async point immediately after it receives a response from

the remote server.

If type checking is enabled, it is expected that c is annotated with the input

and output constraints of c and the expected result from the remote server. Dy-

namic type checks are inserted following a successful response from the remote

17

1 var state = Arrow.ajax(zip => {

2 /**

3 * @conf :: Number ∼> { url: String }

4 * @resp :: { city: String , state: String }

5 */

6 return {

7 url : '/api/v2/zip_codes/US/' + zip ,

8 dataType: 'json'

9 };

10 });

Figure 8: An example of an arrow which asynchronously fetches data form a remote server.

server to ensure the shape of the data matches the annotated type. A concrete

example is given in Figure 8.

Nth. The nth arrow, denoted nth(n), takes a tuple of at least n elements as

input and extracts its nth element. Figure 9 demonstrates the dataflow of this

arrow.

Split. The split arrow, denoted split(n), takes a single value v as input and

converts it to an n-tuple, where each element of the tuple is v. Figure 9 demon-

strates the dataflow of this arrow.

This arrow precludes aliasing by creating n (deep) clones of the value v.

This avoids problems with mutable references to values held by concurrently

executing arrows. Note that while cloning is deep, it does not replicate values

that are treated as atomic by our types such as events.

Cloning is essential to type safety of arrows where the argument passed to an

arrow must have a type compatible to the arrow’s input type. Without cloning,

one branch of execution can mutate a value which is also used on another branch

by reference (e.g. re-assigning or removing the fields of an object). This may

make the value subsequently incompatible with the other branch’s type.

Note that the domelem constructor can be encoded by lift, but is provided

for convenience. The split and nth constructors can also be encoded by lift,

but their types depend on a runtime value (the number of branches of a split)

18

..
.

v1

v2

vn

v ..
.

v1

v2

vn vn

Figure 9: Dataflow diagrams for split and nth arrows.

and cannot be annotated statically with an accurate, fixed-size type.

3.2. Combinators

We provide five arrow combinators (seq, all, try, any, and noemit), de-

tailed below. Async points are represented in dataflow diagrams as double-

slashed lines. The noemit combinator transforms a single arrow. The try com-

binator transforms three arrows. The remaining four combinators transform a

set of n ≥ 1 arrows. This set of combinators is not necessarily exhaustive, but is

large enough that many interesting additional combinators can be derived (e.g.

carry and remember) from this core set.

Seq. The sequence combinator, denoted seq(a1, . . . , an), composes n arrows

which execute in order. The result of arrow ai is fed into arrow ai+1. The input

to a1 is the input of the combinator, and the result of the combinator is the

result of an. The dataflow of the resulting arrow is demonstrated in Figure 10.

a1 a2 . . . anv1 v′n

Figure 10: Dataflow diagram for the seq combinator.

This combinator is asynchronous if any arrow ai is asynchronous. Each

async point of arrow ai is also an async point of the combinator.

This combinator generalizes the binary combinator >>> in the arrow calcu-

lus [1], typed as follows.

(a >>> b) : (A; B)→ (B ; C)→ (A; C)

19

All. The all combinator, denoted all(a1, . . . , an), composes n arrows that ex-

ecute concurrently. This combinator begins executing each arrow, in order, in

a synchronous loop. Once arrow ai completes or reaches an async point, arrow

ai+1 immediately begins execution. Once all arrows have been started, they

may progress through their execution in any order until they all complete, at

which point the combinator completes. The dataflow of the resulting arrow is

demonstrated in Figure 11.

The input to the combinator is an n-element tuple, where the input of each

arrow ai is the ith element of the tuple. The result of the combinator is also an

n-element tuple, where the ith element of the tuple is the result of arrow ai.

a1

..
.

..
.

a2

an

(v
1
,
v 2
,
..
.,
v n

)

(v
′ 1,
v
′ 2,

..
.,
v
′ n
)

Figure 11: Dataflow diagram for the all combinator over arrows a1 through an. The argument

arrows can be simple or a complex result of other combinators (a1 and a2, respectively), and

can be synchronous or asynchronous (a2 and an, respectively).

This combinator is asynchronous if any arrow ai is asynchronous. Each

async point of arrow ai is also an async point of the combinator.

We can construct a combinator equivalent to the unary combinator first ,

typed as follows, in the arrow calculus [1] using this combinator and an identity

arrow id as follows.

first : (A; B)→ (A× C ; B × C)

first a ≡ all(a, id)

20

Try. The try combinator, denoted try(a, as, af), attempts to execute the pro-

tected arrow a with the input of the combinator. If no error occurs during the

execution of a, its output is fed into the success arrow as. Otherwise, the error

value is fed into the failure arrow af . The result of the combinator is either the

result of arrow as or the result of arrow af , depending on which one executed

at runtime. The dataflow of the resulting arrow is demonstrated in Figure 12.

a as

af

va
v′s or v′f

Figure 12: Dataflow diagram for the try combinator.

This combinator is asynchronous if every execution path contains an async

point, regardless of where an exception may occur within the execution of a. We

claim that the combinator is asynchronous if both arrow af and either arrow

a or arrow as is asynchronous. This is an under-approximation which may tag

some arrows whose execution always hit an async point as synchronous, but is

a simple definition that works well in practice.

Promise’s then and catch methods can be encoded by the try combinator.

The statement p.then(resolve) executes p and then the callback resolve on suc-

cessful execution. The statement p.catch(reject) executes p and, if an error oc-

curs, calls reject with the error as input. The statement p.then(resolve, reject)

executes p and then calls either the callback resolve or reject on successful or

unsuccessful execution, respectively. The reject callback is not executed if an

error occurs in resolve.

We can encode these statements with the seq combinator, the try combi-

nator, and an identity arrow id as follows, where the arrow a is functionally

21

equivalent to the promise p.

p.then(s) ≡ seq(a, lift(s))

p.catch(f) ≡ try(a, id , lift(f))

p.then(s, f) ≡ try(a, lift(s), lift(f))

The try combinator can also support a (restricted) encoding of conditional

execution. The protected arrow can return a value to signify that the true

(success) path should be executed, and throw a value to signify that the false

(failure) path should be executed. An example of this was shown in Section 2

Figure 6 by the lookup arrow, which returns a value on cache hit and throws

a value on cache miss. Encoding conditional execution with try does not work

in all circumstances. Because the failure arrow must be able to accept any

exception thrown by the protected arrow, this pattern will not work when the

protected arrow throws exceptions unrelated to control flow.

Any. The any combinator, denoted any(a1, . . . , an), composes n asynchronous

arrows such that only the arrow that first emits a progress event, a∗, runs

to completion. This combinator executes each arrow with the input of the

combinator, in order, in a synchronous loop. Once arrow ai reaches an async

point, arrow ai+1 immediately begins execution. Because the loop running each

arrow is synchronous, the event which resumes the execution of any arrow ai

will not be observed until after an begins listening for an event. Once some

arrow a∗ emits a progress event, the remaining arrows {a1, . . . , an} \ {a∗} are

canceled and the execution of a∗ continues. The result of the combinator is the

result of a∗. The dataflow of the resulting arrow is demonstrated in Figure 13.

This combinator is asynchronous and will emit the first async point of each

arrow ai, then all remaining async points for arrow a∗.

The semantics of this combinator is ill-defined if one (or all) of the arrows

is synchronous – a synchronous arrow would run to completion without giving

its sibling arrows a chance to run due to the single-threaded nature of the

event-loop. Therefore, this combinator enforces the constraint that all n arrows

22

are asynchronous during construction. This check can be easily performed at

composition time.

..
.

..
.

..
.

..
.

a1

a∗

an

v v′∗

Figure 13: Dataflow diagram for the any combinator. Notice that all arrows have an async

point.

Similar to the behavior of the split constructor, this creates n clones of the

input value v before passing copies to the child arrows.

The result of this combinator differs from the result of the Promise.race

method. In particular, the former uses the value of the arrow that makes first

progress where the later uses the value of the promise which rejects or resolves

first. This behavior of the any combinator is more useful when each arrow

contains multiple async points, and the progress of any of them is enough to

choose a branch of execution. In the following example, the task arrow runs

after a window second timeout only if the user does not click the element with

the cancel selector within this period – the progress of either the delay or the

domevent arrows are enough to determine whether or not task should run.

any(seq(delay(window), task), seq(domelem(cancel), domevent(click)))

A similar implementation using Promise.race will resolve when the click event

occurs (regardless if it’s within the initial window second period), or when task

completes (when no click event occurs). Because a promise cannot be canceled,

task will always run. This may be detrimental if it behaves in a user-observable

manner.

23

NoEmit. The no-emit combinator, denoted noemit(a), suppresses the emission

of progress events from a. Although a emits no events, it can still be preempted

or canceled at its suppressed async points. This combinator is asynchronous and

emits a single async point immediately after a completes execution, regardless

of whether a was synchronous or asynchronous.

We can simulate the semantics of the Promise.race method (with added

cancellation of slow arrows) by applying the noemit combinator to the argu-

ments of the any combinator, where the arrow ai is functionally identical to the

promise pi.

race(p1, . . . , pn) ≡ any(noemit(p1), . . . , noemit(pn))

The pairing of these combinators appear much more expressive than either

the any combinator or the Promise.race method alone. As an example, con-

sider two arrows representing the halves of a game, game1 and game2, where

each arrow has an arbitrary number of async points. A time-limit for the first

portion of the game can be encoded by the following.

any(delay(limit), seq(noemit(game1), game2))

Here, the delay arrow will register a handler for a timer event and immediately

yield, at which point game1 begins to execute. Any progress event emitted

by game1 is suppressed by noemit; however, an async point is emitted by the

completion of game1. If the timer completes, the sequence is canceled; if game1

completes, the timer is canceled and game2 begins to execute.

Unfortunately, such expressive semantics are not readily available using

promises, as they do not support a natural way to emit progress events to pre-

vent sibling promises from resolving, nor do they support cancellation (which is

required for efficiency in most cases and correctness in others).

3.3. Recursion and Repeating

The combinators presented in the previous section are all linear, and com-

posed arrows always form a directed acyclic graph. Unfortunately, many user

24

interaction patterns for which arrows would be useful require some sort of rep-

etition. Such patterns include, but are not limited to, continuously responding

to an event and using bounded repetition in the context of animation.

To support such uses, we allow arrows to be defined recursively. This allows

a restricted type of cycle to be introduced to the composition graph. A recursive

arrow is constructed by using a fixed-point primitive, fix, denoted fix(ω => e)

where ω is a reference to the arrow being defined, and e is an expression which

constructs an arrow referencing ω.

In practice, this primitive is implemented by constructing an empty proxy

arrow a, passing a to the function ω => e which results in the arrow a′, then

referencing a′ from within the proxy arrow a. When execution hits the proxy

arrow, it simply executes its reference with the proper arguments. This method

allows a logically infinite arrow to be constructed in constant time and space.

click

delay ajax handle

click

delay ajax handle

click . . .

Figure 14: A recursive arrow composition (unwrapped recursion).

click

delay ajax handle

proxy

Figure 15: A recursive arrow composition (with a proxy arrow).

Figure 14 and Figure 15 show the arrow composition described in Section 2.1

Figure 5, which cannot be constructed without recursion.

Our previous work [5] included an additional combinator, repeat, for a

restricted form of executing an a arrow at least once. The combinator executes

25

a, then uses its output to determine if it should execute the arrow again. If

the arrow is re-executed, its output is fed back into itself. Otherwise, the arrow

halts and yields its most recent value. The dataflow of the resulting arrow is

demonstrated in Figure 16.

The combinator expects the result of a to be tagged union of the form

〈loop : v′, halt : v′′〉, implemented as a simple object type with a tag and value

field. This enables the decision to repeat to be made by reading the tag value.

This type is discussed further in Section 4.

av v′′

v′

Figure 16: Dataflow diagram for the repeat combinator.

The combinator creates an async point following each invocation of the arrow

a. This async point may progress immediately. This async point enables pre-

emption and cancellation between iterations, and prevents synchronous arrows

from looping indefinitely.

With the inclusion of fix, the repeat combinator can be encoded as follows,

where the arrow repeatTail takes the result of a (a tagged union) and either

returns a value of type α or throws a value of type β. repeatTail is implemented

as a lifted function, shown in Figure 17.

repeat(a) ≡ fix(ω => seq(a, delay(0), try(repeatTail, ω, id)))

1 let repeatTail = new LiftedArrow(x => {

2 /* @arrow :: <loop: α, halt: β> ∼> α \ ({}, {β}) */

3 if (x.hasTag('loop')) { return x.value (); }

4 else { throw x.value (); }

5 });

Figure 17: The implementation of the arrow repeatTail .

The try combinator will pass the value v′ recursively to ω, or pass the thrown

value v′′ to the identity arrow. Notice that any invocation of a is not protected

26

by a try combinator, so any exceptional value produced by a will be properly

thrown from the recursive arrow. The async point is added by sequencing a

zero-delay time event after each invocation of a.

3.4. CPS Encoding

Arrows are implemented in continuation-passing style (CPS). Each arrow has

an associated call function accepting a value argument x, a progress object p, a

continuation function k, and an error handling function h. Instead of returning

a value produced by the arrow, it is simply passed to k (on success) or h (on

error). The progress object p is used to track async points for cancellation

and emits progress events (unless suppressed) which are observed by the any

combinator.

To demonstrate the use of the error callback h, we give the CPS encodings for

the lift constructor in Figure 18. To demonstrate the use of the progress object

p, we give the CPS encoding for the delay constructor, the any combinator, and

the try combinator in Figure 19, Figure 20, and Figure 21, respectively. For

brevity, we only show a binary version of the any combinator. In practice, this

combinator can wrap n ≥ 1 arrows.

1 call(x, p, k, h) {

2 try {

3 // Code for spreading arrays into arguments , type checking

4 // of x and y would occur at this point , but has been omitted

5 // for brevity.

6 var y = f(x);

7 } catch (e) {

8 // Error continuation

9 return h(e);

10 }

11

12 // Success continuation

13 k(y);

14 }

Figure 18: Encoding for lift(f) - dynamic type checks omitted.

27

1 call(x, p, k, h) {

2 const cancel = () => clearTimeout(timer);

3 const runner = () => {

4 // Emit progress event and remove canceler

5 p.advance(cancel);

6 k(x);

7 };

8

9 // Kick off event

10 var timer = setTimeout(runner , duration);

11 p.addCanceler(cancel);

12 }

Figure 19: Encoding for delay(duration).

1 call(x, p, k, h) {

2 const p1 = new Progress ();

3 const p2 = new Progress ();

4

5 // Canceling parent progress cancels children as well

6 p.addCanceler (() => { p1.cancel (); p2.cancel (); });

7

8 // When pi makes progress , cancel pj and emit an event

9 p1.addObserver (() => { p2.cancel (); p.advance (); });

10 p2.addObserver (() => { p1.cancel (); p.advance (); });

11

12 // Execute arrows in order (cloning of x omitted for brevity)

13 a1.call(x, p1 , k, h);

14 a2.call(x, p2 , k, h);

15 }

Figure 20: Encoding for any(a1, a2).

The any combinator creates a fresh progress object for each of its children.

An observer is registered to each progress object to be notified when a progress

event with respect to that object is fired. When one progress object emits a

progress event, its sibling arrows are canceled. The noemit combinator creates

a fresh progress object which does not emit the progress events of the arrow

it wraps, but emits a single progress event on completion. The encoding for

noemit is omitted.

28

1 call(x, p, k, h) {

2 // Create a new progress subtree which can be canceled independently.

3 // Cancelling p should cancel branch; progress on branch advances p.

4 const branch = new Progress ();

5 p.addCanceler (() => branch.cancel ());

6 branch.addObserver (() => p.advance ());

7

8 // Original error callback is called if success or error arrows yield

9 // an error - this allows nesting of error callbacks.

10 a.call(x, branch ,

11 y => as.call(y, p, k, h),

12 z => {

13 // "unwind" the stack by removing any event handlers registered

14 // by execution of the protected arrow.

15 branch.cancel ();

16 af.call(z, p, k, h);

17 }

18);

19 }

Figure 21: Encoding for try(a, as, af).

The try combinator creates a fresh progress object for the protected arrow.

This progress object may be canceled independently from the parent progress

object should the protected arrow yield an error, which prevents the cancellation

of sibling arrows which lie outside of the try combinator.

4. Type Inference

In this section, we introduce the type system of our arrows library, which is

carefully designed to ensure that it not only accepts the targeted applications

of our arrows library but also permits efficient type inference. As a dynamic

language, JavaScript does not have type annotations and the types of its ex-

pressions are checked at runtime. Inferring types for full JavaScript statically

is extremely difficult due to features such as higher-order functions, subtyping,

mutable states, objects, and prototypes. However, type inference for arrows is

not only possible but also efficient for the following design choices.

29

• Arrow types are first-order in the sense that the input and output types

of arrows do not contain function types.

• Constructed arrows are typed via user annotations or builtin types.

• The return value of each lifted function is dynamically checked to ensure

that it is consistent with the declared return type. This allows us to avoid

checking the body of the lifted function, which is plain JavaScript code.

• The type of a composed arrow is inferred through solving the constraints

derived from the arrow, which is modular.

In Section 4.1, we define the types of values which can be consumed or

produced by an arrow. In Section 4.2, present the typing rules for arrow con-

structors and arrow combinators The details of the type inference algorithm and

its correctness are given in Section 5 and 6.

4.1. Value Types

Given a set of named types B which includes both JavaScript primitives (e.g.

Number, Bool, String) as well as JavaScript objects which facilitate DOM events

(e.g. DomElem, DomEvent), we define the type of primitive values, denoted b,

as follows.

b ::= ι ∈ B | ι1 + · · ·+ ιn

A sum type consisting solely of named types is represented by ι1+· · ·+ιn, where

each ιi is unique. The order of the types in a sum type is insignificant, and any

permutation represents an equivalent type. A sum type of n = 1 elements is

equivalent to its unique type.

Given an infinite set of type variables A, we define the types of values con-

sumed or produced by arrows, denoted τ , as follows.

τ ::= b | > | α, β ∈ A | 〈`1 : τ1, . . . , `n : τn〉

| [τ] | (τ1, . . . , τn) | {`1 : τ1, . . . , `n : τn}

30

T-Lift

AnnotF(f) = τ1 → τ2 \ (C, E)

lift(f) : τ1 ; τ2 \ (C, E)

T-Delay

d : Number

delay(d) : α; α

T-Ajax

AnnotF(c) = τ1 → {url : String} \ (C1, E) AnnotV(c) = τ2 \ C2

ajax(c) : τ1 ; τ2 \ (C1 ∪ C2, E ∪ {AjaxError})

T-DOM-Elem

selector : String

domelem(selector) : >; DomElem

T-DOM-Event

name : String

domevent(name) : DomElem ; DomEvent

T-Split

n : Number

split(n) : α; (α, . . . , α)︸ ︷︷ ︸
n elements

T-Nth

n : Number

nth(n) : (α, β, . . . , γ)︸ ︷︷ ︸
n elements

; γ

Figure 22: Typing rules for arrow constructors.

The top (any possible) type is represented by >. We assign > type to the

Javascript value undefined and null and use it as the return type of any

JavaScript function that does not return a significant value. The type > is also

commonly used as an upper bound for variables which have incompatible types

(such as numbers and booleans).

A tagged union of type 〈`1 : τ1, . . . , `n : τn〉 holds a single value of type

τi, which is accessible by querying the associated tag `i. These values are

represented by a simple JavaScript object with a tag and a value field. In

particular, the tagged union 〈loop : τ1, halt : τ2〉 is used to support the encoding

of the repeat combinator, as discussed in Section 3.3. An arrow a produces a

value v1 of type τ1 when it expects to be called again with v1 as an argument;

31

T-Seq

Γ ` ai : τi ; τ ′i \ (Ci, Ei) C ′ = ∪ni=2{τ ′i−1 ≤ τi}

Γ ` seq(a1, . . . , an) : τ1 ; τ ′n \ (C ′ ∪
⋃
Ci,

⋃
Ei)

T-All

Γ ` ai : τi ; τ ′i \ (Ci, Ei)

Γ ` all(a1, . . . , an) : (τ1, . . . , τn) ; (τ ′1, . . . , τ
′
n) \ (

⋃
Ci,

⋃
Ei)

T-Try

Γ ` ai : τi ; τ ′i \ (Ci, Ei)

C ′ = {τ ′1 ≤ τ2, τ ′2 ≤ β, τ ′3 ≤ β} ∪ {τ ≤ τ3 | τ ∈ E1}

Γ ` try(a1, a2, a3) : τ1 ; β \ (C ′ ∪
⋃
Ci, E2 ∪ E3)

T-Any

Γ ` ai : τi ; τ ′i \ (Ci, Ei) C ′i = {α ≤ τi, τ ′i ≤ β}

Γ ` any(a1, . . . , an) : α; β \ (
⋃
C ′i ∪

⋃
Ci,

⋃
Ei)

T-Omega

(ω : τ1 ; τ2) ∈ Γ

Γ ` ω : τ1 ; τ2

T-NoEmit

Γ ` a :
∼
τ

Γ ` noemit(a) :
∼
τ

T-Fix

Γ, ω : α; β ` a : τ1 ; τ2 \ (C, E)

Γ ` fix(ω => a) : α; β \ (C ∪ {α ≤ τ1, τ2 ≤ β}, E)

Figure 23: Typing rules for arrow combinators.

otherwise, a produces a final value v2 of type τ2.

An array type with homogeneously-typed elements is represented by [τ], a

tuple type is represented by (t1, . . . , tn), and a record type is represented by

{`1 : τ1, . . . , `n : τn}. The order of the labels in a record is insignificant, and

any permutation of the labels represents an equivalent type.

32

4.2. Arrow Types

We define the types of arrows, denoted

∼
τ ::= τin ; τout \ (C, E)

where C is a set of constraints of the form τ ≤ τ ′ and E is the set of types

which may be produced in exceptional cases.

If C and E are both empty, τin ; τout may be written for short. If the

constraint set C is not consistent, then the type is considered malformed and

the associated composition is rejected during type checking. Section 4.3 outlines

an algorithm for determining whether a constraint set is consistent. In brief,

the algorithm rejects constraint sets whose closure contains obvious subtyping

violations such as String ≤ Number or Number ≤ (Number, Number).

The constrained arrow type is similar to the constrained type τ \ C intro-

duced by Eifrig et al. [6], where the set C contains subtyping constraints on the

type variables occurring in τ . A constrained type inference system generalizes

unification-based inference to languages with subtyping – a feature we found is

necessary for arrow type inference. Note that we use constrained types since

more concrete solutions to the subtyping constraints may be too restrictive.

For example, from the subtyping constraint α ≤ {x : Number} we can infer

the type {x : Number} for α but that would exclude other solutions such as

{x : Number, y : Bool}.

We assume that if a constrained arrow type contains a type variable α in τin,

τout, C, or E, that the type variable is understood to be universally quantified

with respect to the arrow type, i.e.

∀α.τin ; τout \ (C, E)

Typing rules for arrow constructors and combinators appear in Figure 22

and Figure 23, respectively. For brevity, the typing rules have the implicit

assumption that if a : τin ; τout \ (C, E), then C is consistent.

When an arrow type is used as the input of a combinator, a unique instan-

tiation of that type is created in order to prevent unintended clashing of type

33

variables. A unique instantiation of a constrained arrow type is created by sub-

stituting the set of type variables occurring in the type as well as the constraint

set and set of error types with a set of fresh type variables.

Rule (T-Lift) assumes that each lifted function f is annotated with a con-

strained function type describing the input and output types of f , and rule

(T-Ajax) assumes that each Ajax configuration function c is annotated with

two constrained types: a constrained function type describing the input and

output types of c, and a constrained value type describing the response from

the remote server. We assume the existence of the implicit functions AnnotF(f)

and AnnotV(f) which reads the annotation from the function f and produces a

unique instantiation of the type it describes.

Rule (T-Nth) shows how the nth(n) combinator selects the nth element

from a tuple with m ≥ n elements. The argument to this combinator may be a

wider tuple as (τ1, . . . , τm) ≤ (τ ′1, . . . , τ
′
n) is a consistent constraint. Note that

the application of this rule happens at arrow composition time when n is known.

Rule (T-Fix) leads to an algorithmic approach to typing recursive arrows

that we use in practice. As discussed in Section 3.3, an empty proxy arrow

takes the place of recursive reference during construction, and is later updated

by reference. The proxy arrow is given the permissive type α ; β, which

can compose legally with any other arrow. Once the arrow is constructed, we

refine the type of the proxy arrow to match the type of the derived arrow. The

constraint set {α ≤ τ1, τ2 ≤ β} ensures that an arrow of type τ1 ; τ2 can be

used whenever α; β is expected.

4.3. Consistency

In this section, we present the definition of constraint set consistency. An

arrow is consistent if its constraint set is consistent (if no constraint in the

constraint set produces an immediate inconsistency). For example, String ≤

Number is immediately inconsistent, as is (τ, τ) ≤ {` : τ}.

Definition 1 (Closed). A set of constraints C is closed if it satisfies the closure

rules given in Figure 24. We refer to the closure of C as closure(C).

34

Cls-Trans

{τ1 ≤ τ2, τ2 ≤ τ3} ⊆ C

τ1 ≤ τ3 ∈ C

Cls-Array

[τ] ≤ [τ ′] ∈ C

τ ≤ τ ′ ∈ C

Cls-Union

〈`i : τi〉i∈1..k ≤ 〈`i : τ ′i〉i∈1..n ∈ C

{τi ≤ τ ′i}i∈1..k ⊆ C

Cls-Tuple

(τi)
i∈1..n ≤ (τ ′i)

i∈1..k ∈ C

{τi ≤ τ ′i}i∈1..k ⊆ C

Cls-Record

{`i : τi}i∈1..n ≤ {`i : τ ′i}i∈1..k ∈ C

{τi ≤ τ ′i}i∈1..k ⊆ C

Figure 24: Constraint set closure rules, where k ≤ n.

Cns-Var

{τ, τ ′} ∩A 6= ∅

τ ≤ τ ′

Cns-Top

τ ≤ >

Cns-Array

[τ] ≤ [τ ′]

Cns-Sum

{ιi}i∈1..k ⊆ {ι′i}i∈1..n

ι1 + · · ·+ ιk ≤ ι′1 + · · ·+ ι′n

Cns-Union

{`i}i∈1..k ⊆ {`′i}i∈1..n

〈`i : τi〉i∈1..k ≤ 〈`′i : τ ′i〉i∈1..n

Cns-Tuple

(τ1, . . . , τn) ≤ (τ ′1, . . . , τ
′
k)

Cns-Record

{`i}i∈1..n ⊇ {`′i}i∈1..k

{`i : τi}i∈1..n ≤ {`′i : τ ′i}i∈1..k

Figure 25: Constraint set consistency rules, where k ≤ n.

Definition 2 (Consistent). A constraint set C is consistent if every constraint

in closure(C) is consistent. A consistent constraint must match one of the forms

given in Figure 25.

Rule (Cls-Trans) ensures that subtype constraints are transitive. For ex-

ample, C = {String ≤ α, α ≤ Number} contains only consistent constraints.

However, String ≤ Number ∈ closure(C) and the constraint set is therefore con-

sidered inconsistent. This occurs because there is no type for α which satisfies

its bounds.

The remaining closure and consistency rules describe a simple subtyping

join-semilattice. The top type occupies the top of the lattice, by rule (Cns-

Top); there is no bottom type (and hence no greatest lower bound for some

35

sets of types). The presence of a top type allows an arrow consuming no useful

value to be composed with any other arrow, which is a useful property when

sequencing.

Named types are neither subtypes nor supertypes of another named type.

Named types are subtypes of any sum type which contains them. Sum types

are subtypes of their own supersets, by rule (Cns-Sum). This allows an arrow

producing a value from a set of types T and an arrow consuming a value from

a set of types T′ to be composed when T ⊆ T′.

Rules (Cns-Union), (Cns-Array), (Cns-Tuple), and (Cns-Record) en-

sure that composite datatypes are consistent only with composite datatypes

with the same outermost type constructor. Tuple and record width subtyping

is enabled by rules (Cns-Tuple) and (Cns-Record). Array, union, tuple,

and record depth subtyping is enabled by rules (Cls-Array), (Cls-Union),

(Cls-Tuple), and (Cls-Record).

Type variables are never immediately inconsistent with another type, by

rule (Cns-Var). This makes it possible to have a set of constraints describing

an impossible lower bound for some type variable α. For example, α has an

impossible lower bound in C = {α ≤ String, α ≤ Number} as no lower bound

of both String and Number exists. This case is handled by type simplification,

discussed in Section 4.4.

4.4. Type Simplification

In this section, we discuss a type simplification technique for arrow types.

Details of simplification is given in the appendix. Our goal is to remove as

many unnecessary constraints from the constraint set of an arrow type as possi-

ble. This keeps the size of arrow types small, decreasing memory and inference

overhead.

We simplify the type of an arrow immediately after its type is inferred in-

ferred during composition (with one exception, discussed below). This prevents

compositions of arrows from carrying constraints which are unreachable from

the input type, output type, or set of exception types. Without simplification,

36

arrow types are noticeably larger and type inference is noticeably slower as clo-

sure calculation and consistency checks are at least linear (usually much larger)

with the size of the arrow type.

As a motivating example, consider the following composition involving an

arrow a of type DomEvent ; >.

seq(split(2), all(id , seq(domevent(click), a), nth(1)))

The resulting arrow takes as input a DomElem value, waits until a click events

occurs on that value, invokes the arrow a with the resulting event, and then

yields the original DomElem value. This is useful as it allows multiple events to

be sequenced on the same event. Without type simplification, the type of the

resulting arrow is as follows.

α; δ \ ({ DomEvent ≤ DomEvent, (α, α) ≤ (DomElem, β),

(>, β) ≤ (γ, δ), α ≤ DomElem, α ≤ β, > ≤ γ,

β ≤ δ, α ≤ δ }, ∅)

The first constraint, DomEvent ≤ DomEvent, is introduced by the inner seq.

The next two constraints (α, α) ≤ (DomElem, β) and (>, β) ≤ (γ, δ), are

introduced through the seq combinator and the split and nth arrows. The

remaining constraints are introduced by closure rules described in Section 4.3.

After type simplification we are given the following, which is much smaller and

more easily understandable.

α; δ \ ({ α ≤ δ, α ≤ DomElem }, ∅)

A sample application implementing the game Memory (discussed in in Sec-

tion 7) creates an arrow with 1, 414 distinct constraints involving 56 type vari-

ables with type simplification disabled, and no constraints after minimization.

Simplifying Recursive Arrows. Recursively composed arrows add four addi-

tional constraints on the input type α and the output type β to the arrow’s

constraint set after the type of the inner arrow is inferred. In this case, it

37

is incorrect to simplify the type of the inner arrow during composition, as it

may remove a constraint involving α or β which will become necessary to the

recursion, but appears locally unnecessary.

For example, consider the arrow with the recursive definition

fix(ω => seq(a, ω))

where a has type ι1 ; ι2. The typing of this arrow is shown below. Because

{ι2 ≤ α, α ≤ ι1} ∈ C, {ι2 ≤ ι1} ∈ closure(C), the arrow correctly fails to type

check.

ω : α; β ` ω : α; β ω : α; β ` a : ι1 ; ι2

ω : α; β ` seq(a, ω) : ι1 ; β \ ({ι2 ≤ α}, ∅)

∅ ` fix(ω => seq(a, ω)) : α; β \ ({ι2 ≤ α} ∪ {α ≤ ι1, β ≤ β}, ∅)

However, if the type of seq(a, ω) is simplified before being used in the type

rule for fix, then the constraint ι2 ≤ α is simplified away and the type of the

recursive arrow is incorrectly inferred to be α; β \ ({α ≤ ι1}, ∅).

In practice, we temporarily disable type simplification of constraints involv-

ing α or β while the fixed-point expression is being evaluated, then simplify the

type of the entire arrow all at once.

5. Semantics

In this section, we describe the semantics of JavaScript’s single-threaded

event loop and arrow constructors and combinators. We define a simplified

calculus, abstract arrows, as an extension of lambda calculus in Section 5.1 and

define the operational semantics in Section 5.2. A translation from concrete

arrows to abstract arrows is presented in Section 5.3.

5.1. Abstract Arrows

Figure 26 defines the complete abstract syntax. We extend the lambda

calculus with sequencing, tuple values, tuple projection, tagged expression, and

38

e ::= x variable

| e1 e2 | vf e application

| e1; e2 sequence

| (e1, . . . , en) | e[j] tuple & projection

| `(e) | case e of { `(x)⇒ e } tag & matching

| fix(λω.ea) fixed-point combinator

| ea • (e, ep, ek, eh) arrow application

| async ve ep ek event registration

| adv ep event cancellation

| cancel ep

| v | vp | ep | ek | eh | ve
v ::= vc | λx.e constants, & abstractions

| () unit value

| `(v) tagged values

| (v1, . . . , vn) | {`1 : v1, . . . , `n : vn} tuples and records

vf ::= f | c host function

va ::= λx.λp.λk.λh.e abstract arrow

ea ::= ω | va
ep ::= p | P ji :: ep | Qi :: ep | vp progress expression

vp ::= ε | P ji :: vp | Qi :: vp progress value

ek ::= k | λy.e continuation

eh ::= h | λy.e exception continuation

ve ::= evn(v, τ \ C, E) event value

evn ::= timeEv | ajaxEv event types

Figure 26: Abstract syntax.

tag pattern matching. We include a standard fix-point combinator specifically

for abstract arrows. An abstract arrow, denoted by ea, has the form

λx.λp.λk.λh.e

39

where the parameter x denotes the input value of the arrow, the parameter p

denotes a progress list, the parameter k denotes a continuation function, and

parameter h denotes an exception continuation function. Application of an

abstract arrow is represented by an expression of the form ea • (e, ep, ek, eh),

which is simply sugar for the expression ((((ea e) ep) ek) eh). The unit value

() represents null and undefined values in JavaScript. We use vc to represent

constant values, such as numbers, booleans, and arrays which may be consumed

or returned by host functions. For brevity, we do not include typing rules for

vc.

a

b

c

d

ε

P 1
1

P 1
2

P 2
1

Q3

P 1
4

P 2
2

P 2
4

Figure 27: An example progress tree.

A progress list is an ordered sequence of progress tokens, which formalizes

the progress objects described in Section 3. Progress tokens may be created in

pairs, denoted by P 1
i and P 2

i , or may be created alone, denoted by P 1
i and Qi.

Pairs of progress tokens are used to tag the arms of the any combinator so that

progress made in one arm can affect the other. A single progress token is used

to mark the beginning of the try combinator (using the progress token P 1
i) and

the noemit combinator (using the progress token Qi).

The progress list is carried by an abstract arrow and grows during its exe-

cution - when an arrow begins executing an arm of the any combinator, it will

prepend a fresh progress token P ji to its progress list (and similarly for the try

and noemit combinators). Arrows may share a common prefix of abstract ar-

40

rows, which allows representing progress lists as a tree of progress tokens. The

progress of the following arrow is illustrated in Figure 27.

any(any(a, b), noemit(any(c, d)))

Each branch of the any combinator gets a unique progress value which is linked

to its siblings. The entrance to each noemit combinator is signified by the

subtree rooted at a progress token Qi. The progress list at the async point for

arrow d is P 2
4 :: Q3 :: P 2

1 :: ε.

When an arrow makes progress within an any combinator, the event handlers

of the arrows represented by the progress tokens in all other subtrees are de-

registered.

The expression adv ep cancels the arrows which are not on the path ep in

the progress subtree rooted at the nearest ancestor of the form ε or Qi. The

expression cancel ep cancels the arrows which are in the progress subtree ep.

In reference to Figure 27, adv P 2
1 will cancel arrows a and b. adv P 1

4 will

cancel only d; however, adv P 2
2 will cancel a, c, and d. cancel P 1

1 will cancel

arrows a and b and cancel ε will cancel all four arrows. Progress objects oper-

ating within noemit can be canceled from outside, but cannot cancel progress

objects outside the noemit themselves.

Registration of event handlers are represented by the expression

async ve ep ek

where ve ranges over time and Ajax event objects, ep is the progress list asso-

ciated with the event (for cancellation), and ek is a continuation invoked after

the event occurs. We explicitly model time and Ajax events (corresponding to

delay and ajax arrows) but omit DOM events as they provide no additional

formal interest.

5.2. Operational Semantics

This section defines the operational semantics over expressions of the form

ê ::= e | ‹e›

41

where ‹e› denotes an expression which occurs at the top-level. Event callbacks

are registered to the event context, denoted ∆, which maps event objects ve to

pairs of progress lists and continuations. A program starts with an empty event

context.

∆ ::= ∅ | ∆ ∪ {ve 7→ (vp, λx.e)}

In particular, if ∆ 6= ∅, (∆, ‹v›) may be be reducible while (∆, v) cannot.

The evaluation context E , described in Figure 28, represents a family of

terms containing a hole [·]. If E is an evaluation context, then E [e] represents E

with the term e substituted for the hole. The evaluation context and the rule

(E-Congruence) specify the evaluation order of subexpressions.

E ::= [·] expression hole

| ‹E› system expression

| E e | v E | vf E application

| E ; e sequence

| (vi∈1..k−1i , E , ei∈k+1..n
i) tuples

| E [j] projection

| `(E) tagged expression

| adv E event expressions

| cancel E

| async ve vp E

| case E of { `(x)⇒ e } case expression

| E • (e, vp, ek, eh) arrow application

| va • (E , vp, ek, eh)

| va • (v, vp, E , eh)

| va • (v, vp, vk, E)

Figure 28: Evaluation context.

Figures 29 and 30 define the operational semantics of abstract arrows. Con-

trol flow rules are given by rules (E-Seq) and (E-Case). Rule (E-Seq) en-

codes sequencing which evaluates left-to-right. Rule (E-Case) shows that case

42

E-Congruence

∆, e→ ∆′, e′

∆, E [e]→ ∆′, E [e′]

E-App

∆, (λx.e) v → ∆, [v/x]e

E-Seq

∆, v; e→ ∆, e

E-Proj

1 ≤ j ≤ n

∆, (vi)
i∈1..n[j]→ ∆, vj

E-Case

∆, case `i(v) of {`i(xi)⇒ ei}i∈1..n → ∆, [v/xi]ei

Figure 29: Operational semantics (lambda calculus and extensions).

expressions reduce to the arm labeled with the tag of the value being matched.

Evaluation may become stuck if no such arm exists.

The rule (E-Arrow-App) is straightforward, as arrow application is simply

a sugared form of lambda application.

We distinguish the execution of a host function from application of lambda

terms (E-Host-App). The application of a host function may produce a value

or raise an exception. The result of a host application must be read via case

expression ensuring that both normal and exceptional values are handled ap-

propriately. We also insert a runtime type check to ensure the output of a call

to f is consistent with the declared type of f (which is supplied by the user). A

runtime errors when the result of a call to f is a value of an unexpected type,

but this can only occur if f is incorrectly annotated. The rule (E-Fix) is a

standard reduction rule for a fixed-point combinator.

Rules (E-Async) and (E-Event) describe the semantics of JavaScript’s

single-threaded event loop. JavaScript executes a chunk of code until completion

before selecting a callback function from a queue determined by events which

have been triggered externally. Rule (E-Async) adds a mapping from the event

object ve to a pair consisting of a progress list a callback function to the event

context ∆. Rule (E-Event) can be applied once there is no reducible term and

there is some event ve ∈ ∆ which has been triggered externally and concurrently

43

E-Arrow-App

va = λx.λp.λk.λh.e0 vk = λy.e1 vh = λz.e2

∆, va • (v, vp, vk, vh)→ ∆, [v/x, vp/p, vk/k, vh/h]e0

E-Host-App

(vf v) ↓ v′ AnnotF(vf) = τ1 → τ2 \ (C, E)

∅ ` v′ : 〈succ : τ2, fail : τ3〉 τ3 ∈ E or (E = ∅ and τ3 = >)

∆, vf v → ∆, v′

E-Fix

∆, fix(λω.e)→ ∆, [fix(λω.e)/ω]e

E-Async

∆, async ve vp λx.e→ ∆ ∪ {ve 7→ (vp, λx.e)}, ()

E-Event

ve = evn(v, τ1 \ C, E) ve 7→ (vp, λx.e) ∈ ∆

∅ ` Resp(ve) : 〈succ : τ1, fail : τ2〉 τ2 ∈ E or (E = ∅ and τ2 = >)

∆, ‹v›→ ∆ \ {ve 7→ (vp, λx.e)}, ‹[Resp(ve)/x]e›

E-Advance

∆, adv (P ji :: vp)→ {ve 7→ (v′p, λx.e) ∈ ∆ | P ki 6∈ v′p, k 6= j}, adv vp

E-Advance-Quiet

∆, adv (Qi :: vp)→ ∆, ()

E-Advance-Empty

∆, adv ε→ ∆, ()

E-Cancel

∆, cancel P ji :: vp → {ve 7→ (v′p, λx.e) ∈ ∆ | P ji 6∈ v
′
p}, ()

Figure 30: Operational semantics (host application and events).

(e.g. a timer elapsed or a network request completed). The response of the event,

either nominal or exceptional, is retrieved by the function Resp. The response

is then applied to the continuation, and the continuation body becomes the

current reducible term. This term is evaluated to completion before the rule can

be applied again. It is assumed that ve has completed when rule (E-Event) is

applied - evaluation otherwise blocks. Similarly to host application, we insert a

44

runtime type check to ensure the value generated by the event conforms to the

declared type of the event (which is necessary in practice when trusting data

returned from a remote server during an Ajax event).

The rules (E-Advance) and (E-Advance-Empty) describe a specific form

of event cancellation used by abstract arrows. The expression adv vp will prune

from the event context ∆ all registered event handlers which are associated

with a progress token that does not occur in vp. Essentially, when the arrow

associated with progress list vp makes progress, other arrows waiting on an event

have lost the race and must be canceled. We cancel each progress token in the

list recursively, as any combinators may be deeply nested, and a single progress

event may cause multiple any combinators to choose a winning arm (arrow a∗).

The addition of rule (E-Advance-Quiet) enables the noemit combinator,

but changes the behavior of adv vp subtly. The translation rules in Section 5.3

show that noemit combinators immediately introduce a progress token Qi.

When this progress token is encountered while advancing a progress list, the

cancellation halts. This confines cancellations to the subtree rooted at the near-

est Qi, and only arrows associated with progress tokens within the same subtree

are affected.

Again, the arrows of Figure 27 help demonstrate this difference: if the

progress list associated with arrow b is advanced, then arrows a, c, and d are

all canceled; however, if the progress list associated with arrow d is advanced,

then arrow c is canceled but arrows a and b are not.

The rule (E-Cancel) describes a way to cancel the execution of a specific

arrow. The expression cancel vp will prune from the event context ∆ all reg-

istered event handlers which are associated with a progress token that has a

suffix of vp (representing the ancestors in the progress tree). There is no need

to cancel recursively, as in the advance rules, as the element at the head of the

progress list vp is sufficient to distinguish the remaining path. It is worth noting

that the head of a canceled progress list will always be of the form P 1
i as cancel

occurs only within the translation of the try combinator.

45

5.3. Translation to Abstract Syntax

Jlift(f)K ≡ λx.λp.λk.λh. case f x of succ(y)⇒ k y, fail(y)⇒ h y

Jajax(c)K ≡ λx.λp.λk.λh. case c x of

succ(y)⇒ async ajaxEv(y, τ \ C, E) p λv.case v of

succ(z)⇒ adv p; k z,

fail(z)⇒ h z,

fail(y)⇒ h y

. where AnnotV (c) = τ \ C and E = {AjaxError}

Jdelay(n)K ≡ λx.λp.λk.λh. async timeEv(n, >, ∅) p λv.case v of

succ(y)⇒ adv p; k x, fail(y)⇒ ()

Ja.run()K ≡ JaK • ((), ε, λ.(), λ.())

Figure 31: Arrow translation rules (constructors).

Figures 31 and 32 define the translation from concrete arrows to abstract

arrows. For simplicity, the translation rules for the n-ary combinators seq, all

and any are defined as binary combinators. The extension of these translation

rules to support n ≥ 2 arrows is trivial but notationally dense. We omit the

translation of domelem, split, and nth arrows as they can be translated from

simple lifted functions. To further reduce clutter, the semantics do not include

the domevent constructor as it is only trivially different from delay and ajax

in relevant semantics.

The arrow lift(f) is translated to an expression that invokes the host func-

tion f , then applies the result of the function to the continuation k on success

and to h on exception. The ajax and delay arrows are translated to expres-

sions that register callback functions to Ajax and time events, respectively. The

progress list P is advanced in the callback functions of these arrows in order to

create an observable async point.

The term a.run() is translated to an expression that applies JaK to a dummy

46

callback function and returns ()2. The translation rules for the seq and all

combinators are fairly straightforward.

Jseq(a1, a2)K ≡ λx.λp.λk.λh.

Ja1K • (x, p, λy.Ja2K • (y, p, k, h), h)

Jall(a1, a2)K ≡ λx.λp.λk.λh.

Ja1K • (x[1], p, λy.Ja2K • (x[2], p, λz.k (y, z), h), h)

Jtry(a, as, af)K ≡ λx.λp.λk.λh.JaK • (x, P 1
i :: p,

λy.JasK • (y, p, k, h),

λy.cancel P 1
i :: p; Jaf K • (y, p, k, h))

Jany(a1, a2)K ≡ λx.λp.λk.λh.

Ja1K • (x, P 1
i :: p, k, h); Ja2K • (x, P 2

i :: p, k, h)

Jnoemit(a)K ≡ λx.λp.λk.λh. JaK • (x, Qi :: p, λy.adv p; k y, h)

Jfix(ω => a)K ≡ fix(λω.JaK)

JωK ≡ ω

Figure 32: Combinator translation rules (combinators). Progress tokens P 1
i , P

2
i , and Qi are

fresh.

The combinator try(a, as, af) executes the abstract arrow JaK with a unique

progress list. This ensures that there is a subtree rooted at P 1
i in the progress

tree which can be canceled if the evaluation of the abstract arrow JaK yields an

error. This essentially unwinds the stack of the protected arrow, removing any

event handlers that it registered during its execution before its exceptional halt.

The combinator any(a1, a2) executes the abstract arrows Ja1K and Ja2K with

diverging progress lists. The two progress lists ensure that if the execution of

a1 makes progress, then a2 is canceled (and the opposite). The combinator

noemit(a) is translated to an abstract arrow JaK with a progress list prefixed by

a unique progress token, which acts as a cancellation boundary for the executing

2In practice, we return a progress object from a.run() so that the user is able to cancel the

event handlers generated by the execution of a.

47

arrow.

6. Properties

This section sketches a proof of soundness for typed arrows. The proof is

based on a pair of progress and preservation theorems [7] for arrows translated

to abstract syntax. Full proofs for each stated theorem appear in the appendix.

First, we establish that the translation of concrete arrows into abstract ar-

rows preserves types (Theorem 1, stated below). For abstract syntax, we define

an additional set of types composed of value types and functions over value

types as follows.
→
τ ::= τ | →τ → →

τ

This additional family of types is necessary to describe, in particular, the type

of functions which accept continuations as an argument. A translated arrow has

the following type

τ1 → τp → (τ2 → >)→ (τ3 → >)→ > \ C

where τ1 is the input to the arrow, τp is the type of all progress expressions ep,

(τ2 → >) denotes the success continuation, and (τ3 → >) denotes the failure

continuation. The arrow, success continuation, and failure continuation do not

return useful values as they may execute asynchronously.

We use Γ̂ to denote the typing context for arrows translated to abstract

syntax, defined from the typing context for concrete arrows Γ as follows.

Γ̂ = {ω : α→ τp → (β → >)→ (τ3 → >)→ > | (ω : α; β ∈ Γ)}

Note that the type τ3 can be a freshly generated type variable that serves as

the upper bound for the types of exceptions that may be thrown by an arrow.

In the typing rules for arrows, this type is not required since the dataflow of

exceptions is implicit but the type must be provided explicitly after translation

for the failure continuations.

48

TA-Abs

Γ̂, x :
→
τ1 ` e :

→
τ2 \ C

Γ̂ ` λx.e :
→
τ1 →

→
τ2 \ C

TA-App

Γ̂ ` e1 :
→
τ1 →

→
τ2 \ C1 Γ̂ ` e2 :

→
τ3 \ C2

Γ̂ ` e1 e2 :
→
τ2 \ C1 ∪ C2 ∪ {

→
τ3 ≤

→
τ1}

TA-Sub

Γ̂ ` e :
→
τ
′
\ C

Γ̂ ` e :
→
τ \ C ∪ {→τ

′
≤ →τ }

TA-Simplify

Γ̂ ` e :
→
τ \ C ∪ {→τ1 →

→
τ2 ≤

→
τ1
′
→ →
τ2
′
}

Γ̂ ` e :
→
τ \ C ∪ {→τ1

′
≤ →τ1,

→
τ2 ≤

→
τ2
′
}

TA-Var

(x : τ) ∈ Γ̂

Γ̂ ` x : τ

TA-Omega

(ω : τ1 → τp → (τ2 → >)→ (τ3 → >)→ >) ∈ Γ̂

Γ̂ ` ω : τ1 → τp → (τ2 → >)→ (τ3 → >)→ >

TA-Unit

Γ̂ ` () : >

TA-Tag

Γ̂ ` e : τ \ C

Γ̂ ` `(e) : 〈` : τ〉 \ C

TA-Prog-Empty

Γ̂ ` ε : τp

TA-Prog

p = P ji or p = Qi or (p : τp) ∈ Γ̂ Γ̂ ` ep : τp

Γ̂ ` p :: ep : τp

TA-Seq

Γ̂ ` e1 : > \ C1 Γ̂ ` e2 : > \ C2

Γ̂ ` e1; e2 : > \ C1 ∪ C2

TA-System

Γ̂ ` e :
→
τ \ C

Γ̂ ` ‹e› :
→
τ \ C

TA-Tuple

Γ̂ ` ei : τi \ Ci

Γ̂ ` (ei)
i∈1..n : (τi)

i∈1..n \
⋃
Ci

TA-Proj

Γ̂ ` e : (τi)
i∈1..n \ C 1 ≤ j ≤ n

Γ̂ ` e[j] : τj \ C

TA-Case

Γ̂ ` e : 〈`i : τi〉i∈1..n \ C Γ̂, xi : τi ` ei : > \ Ci

Γ̂ ` case e of {`i(xi)⇒ ei}i∈1..n : > \ C ∪
⋃
Ci

Figure 33: Typing rules for expressions in abstract syntax (lambda calculus and extensions).

The typing rules for arrows in abstract syntax are shown in Figure 33, Figure

34, and Figure 35. The typing rules have the implicit assumption that all type

variables are fresh and if Γ̂ ` e :
→
τ \ C, then C is consistent.

49

TA-Arrow

Γ̂, x : τ1, p : τp, k : (τ2 → >), h : (τ3 → >) ` e : > \ C

Γ̂ ` λx.λp.λk.λh.e : τ1 → τp → (τ2 → >)→ (τ3 → >)→ > \ C

TA-Fix

T ≡ τ1 → τp → (τ2 → >)→ (τ3 → >)→ > Γ̂, ω : T ` ea : T \ C

Γ̂ ` fix(λω.ea) : T \ C

TA-Arrow-App

Γ̂ ` ea : τ1 → τp → (τ2 → >)→ (τ3 → >)→ > \ C Γ̂ ` e : τ1 \ C1

Γ̂ ` ep : τp Γ̂ ` ek : τ2 → > \ C2 Γ̂ ` eh : τ3 → > \ C3

Γ̂ ` ea • (e, ep, ek, eh) : > \ C ∪ C1 ∪ C2 ∪ C3

TA-Host-App

AnnotF(vf) = τ1 → τ2 \ (C, E) Γ̂ ` e : τ1 \ C1

Γ̂ ` vf e : 〈succ : τ2, fail : α〉 \ C ∪ C1 ∪ {τ ≤ α | τ ∈ E}

Figure 34: Typing rules for expressions in abstract syntax (arrow definitions and host appli-

cation events).

We claim that the execution of an arrow translated to abstract syntax does

not get stuck (Theorem 4, stated below). We make the assumption that all

events occur eventually and therefore the event handlers added to ∆ are invoked

eventually.

Definition 1 (Well-formed event context). ∆ is well-formed if and only if for

each ve 7→ (vp, λx.e) ∈ ∆ the following properties hold

• ∅ ` ve : 〈succ : τ1, fail : τ2〉 \ C,

• ∅ ` λx.e : τ3 → > \ C ′, and

• C ∪ C ′ ∪ {〈succ : τ1, fail : τ2〉 ≤ τ3} is consistent.

Theorem 1 (Preservation of types under translation). If a is well-typed with

respect to a typing context Γ, then JaK has a symmetric type with respect to a

50

TA-Async

Γ̂ ` ve : 〈succ : τ1, fail : τ2〉 \ C1

Γ̂ ` ep : τp Γ̂ ` λx.e : τ3 → > \ C2

Γ̂ ` async ve ep λx.e : > \ C1 ∪ C2 ∪ {〈succ : τ1, fail : τ2〉 ≤ τ3}

TA-Ajax-Event

Γ̂ ` v : {url : String}

Γ̂ ` ajaxEv(v, τ \ C, {AjaxError}) : 〈succ : τ, fail : AjaxError〉 \ C

TA-Time-Event

Γ̂ ` e : Number

Γ̂ ` timeEv(e, >, ∅) : 〈succ : >, fail : >〉

TA-Advance

Γ̂ ` ep : τp

Γ̂ ` adv ep : >

TA-Cancel

Γ̂ ` ep : τp

Γ̂ ` cancel ep : >

Figure 35: Typing rules for expressions in abstract syntax (events).

typing context Γ̂. Formally,

Γ ` a : τ1 ; τ2 \ (C, E)

=⇒ Γ̂ ` JaK : τ1 → τp → (τ2 → >)→ (τ3 → >)→ > \ Ĉ

where CE = C ∪ {τ ≤ τ3 | τ ∈ E} and closure(CE) ⊆ closure(Ĉ).

Theorem 2 (Preservation of ∆). If ∆, ê → ∆′, ê′, ∆ is well-formed, and

Γ ` ê :
→
τ \ C, then ∆′ is well-formed.

Theorem 3 (Preservation of Γ̂). If ∆, ê → ∆′, ê′, ∆ is well-formed, and

Γ̂ ` ê :
→
τ \ C, then ∃→τ

′
\ C ′ such that Γ̂ ` ê′ :

→
τ
′
\ C ′ and one of the following

conditions hold.

1. ê = ‹e›,

2. ê 6= ‹e›,
→
τ =

→
τ
′
and closure(C ′) ⊆ closure(C), or

51

3. ê 6= ‹e›,
→
τ 6= →τ

′
and closure(C ′ ∪ {→τ

′
≤ →τ }) ⊆ closure(C).

Theorem 4 (Progress). If ∅ ` ê :
→
τ \ C and ∆ is well-formed, then one of the

following conditions holds.

1. ê = v,

2. ê = ‹v› and ∆ = ∅,

3. ∃∆′, ê′ such that ∆, ê→ ∆′, ê′, or

4. a typing premise fails in rule (E-Host-App) or (E-Event).

Theorem 5 (Soundness). If ∅ ` a :
∼
τ and ∅, JaK →∗ ∆, ê, where →∗ is a

reflexive and transitive closure of→, then one of the following conditions holds.

1. ê = v,

2. ê = ‹v› and ∆ = ∅,

3. ∃∆′, ê′ such that ∆, ê→ ∆′, ê′, or

4. a typing premise fails in rule (E-Host-App) or (E-Event).

7. Discussion

7.1. Implementation

Our arrows library consists of less than 1500 lines of code (900 of which

implement the type checker), excluding the automatically generated type an-

notation parser. This library supports all versions of JavaScript. While our

examples and library are written in ECMAScript 6 syntax, they have been au-

tomatically translated to syntax compatible to earlier versions of JavaScript.

The primary platforms for our arrows library are browsers. However, it can also

be used in platforms such as Node.js for server applications. For example, we

have implemented an arrow constructor for database queries in Node.js and its

implementation is very similar to that of the ajax arrow. In fact, this database

arrow is used in the implementation of the backend for the pagination example

listed on the project website.

52

7.2. Compatibility with existing code

Arrows are compatible with existing code implemented with callbacks and

promises. Applications using arrows can call libraries implemented with call-

backs or promises normally. In fact, our example applications use jQuery to

access HTML elements. Program components implemented with arrows can be

part of an application that also uses callbacks or promises. However, callbacks

or promises cannot be used as arrows, which must be created through arrow

constructors. In our experience, applications should use only arrows to encode

the asynchronous logic in order to achieve more predicable semantics.

7.3. Sample Applications

In the following, we refer to a set of five non-trivial sample applications

described below. The full source of each application is available at the project

homepage3.

Memory. A game played with a grid of sixteen cards in which the player must

choose two cards until all matching pairs have been selected.

Whack-a-Mole. A game played with a grid of nine image elements. Each ele-

ment is controlled independently by an arrow which displays a clickable mole

for a randomly selected period of time. The game ends when either after the

user has clicked on ten visible moles, or fifteen seconds have elapsed.

Music Player. A small music player that supports pausing and moving forwards

and backwards through a fixed playlist.

Sorting Animation. An animation which randomly permutes (using the Fischer-

Yates shuffling algorithm) then sorts (using Bubble Sort) a series of elements

by width. This application is a semi-direct re-implementation of an Arrowlets

application [4].

3http://arrows.eric-fritz.com

53

http://arrows.eric-fritz.com

Pagination. An Ajax-driven application which displays a table of results from

a remote server. The user can filter a set of results by keyword, and then page

forward and backward through the filtered result set. This application includes

the following three optimizations.

1. Cache responses from the remote server so that the same request does not

require an extra network round-trip,

2. attempt to pre-fetch the next page of results while the application is idle

on the current page, and

3. do not send an Ajax query until 400ms after the user stops typing in order

to prevent spurious remote requests.

This application is described in detail by Fritz, Antony, and Zhao [8].

7.3.1. Application Complexity

Each application described above is implemented once using callbacks (for

a baseline), and once using arrows. For comparison, the full source of each

callback-only implementation is also available at the project homepage.

The number of lines of code (including blank lines and comments) for each

application is given in Figure 36.

App Shared Arrows Composition Callbacks

Memory 91 38 38 54

Whack-a-Mole 31 80 60 74

Music Player 32 100 30 91

Sorting Animation 41 62 25 72

Pagination 0 122 42 72

Figure 36: The number of lines of code required to implement the sample applications.

The second column, Shared, gives the number of lines of code common

between the implementation using arrows and the implementation using only

54

callbacks. The third column, Arrows, gives the total number of lines for the ar-

row implementation, including the definition of functions lifted into arrows. The

fourth column, Composition, shows the number of lines spent on composing

the arrow (excluding definitions of lifted functions and helper functions). The

fifth column, Callbacks, gives the total number of lines for the callback-only

implementation.

The implementations for Memory and the sorting visualizer require fewer

total lines when implemented with arrows when compared to a callback-only

implementation.

The implementations for Whack-a-Mole, the pagination application, and the

music player require a greater number of lines when implemented with arrows

when compared to a callback-only implementation, but only because the imple-

mentation defines named functions with type annotations. The music player, for

example, defines a function play taking a single argument song with the body

song.trigger(‘play’); and type DomElem ; >. This function is defined

over five lines. The music player defines thirteen similar functions.

The callback-only implementations are not strictly equivalent to the arrow

implementations of the same application. In particular, the pagination applica-

tion does not cancel the pre-fetch remote request when the user begins a new

query or pages backwards in the callback-only implementation, but does in the

arrow implementation. This is trivial to encode with arrows but proved difficult

to do correctly using only callbacks. In addition, the same application contains

a race condition in the callback-only implementation – two Ajax requests can

be in-flight at the same time in such a way that the earlier request comes back

last and displays stale results. Because arrows implicitly cancel arrows which

lose a race, this behavior is not present in the implementation using arrows.

Similarly, the callback-only implementation of the music player contains a bug

which is not present in the implementation using arrows – when moving back-

wards through tracks quickly, it is possible to move the application into a state

where no song can play without refreshing the page. The source of this behavior

is not obvious (and is currently unknown).

55

The sorting visualizer requires explicitly-managed recursion and contains

deep nesting (shown in Figure 37) when implemented with callbacks. When

implemented with arrows, the animation timing is a linear composition (e.g.

seq(indent , delay(n), swap, delay(n), dedent , delay(n))).

1 function animateSwap(onComplete) {

2 setTimeout (() => {

3 indent ();

4 setTimeout (() => {

5 swap ();

6 setTimeout (() => {

7 dedent ();

8 setTimeout(onComplete , ANIMATION_DELAY);

9 }, ANIMATION_DELAY);

10 }, ANIMATION_DELAY);

11 }, ANIMATION_DELAY);

12 }

Figure 37: A portion of the sorting visualization implemented using callbacks.

The Whack-a-mole game implemented using only callbacks uses a global

variable as a cancellation token. When resuming after a timeout, the token is

compared against a local expected value and will return immediately if these

values differ. Without this cancellation, timers from previous games will still

be running during the next round and can silently influence element click han-

dlers, user score, element visibility, and the game-over timer. As arrows support

implicit cancellation, this technique is unnecessary.

7.3.2. Annotation Burden

For each application described above, we determined the number of functions

for which a user supplied an annotation. Figure 38 shows these results.

The second column, Arrows, gives the total number of arrows which were

created for this application (including arrows created via combinators). The

third column, Annotations gives the total number of arrows for which an

annotation is attached. This includes built-in arrows as well as functions lifted

by the user. This number is also not unique, so each arrow, such as the identity

56

App Arrows Annotations User Annotations

Memory 132 35 8

Whack-a-Mole 314 85 5

Music Player 178 41 11

Sorting Animation 144 42 3

Pagination 105 26 9

Figure 38: Number of annotations parsed in each application.

arrow annotated with type α; α, may be counted multiple times. The fourth

column, User Annotations, counts the number of unique annotations that the

user supplied.

The last column gives a sense of the burden placed on the developer to

support types. In all of the sample applications, the burden is very small – only

a handful of comments must be placed inside functions lifted into arrows.

Furthermore, the annotations themselves are in the majority of cases ex-

tremely simple. Many lifted functions simply require a single parameter or pair

of parameters with a concrete type. A handful of annotations are a bit more

complex, but are not difficult to write. For instance, the Whack-a-Mole game

creates an arrow which simply throws a value on the tenth whack in order to

stop all nine moles from running. The type of this arrow is >; > \ (∅, {>}).

It reads global state, does not read its parameter, has no return value, and

only the presence of the exception value is meaningful. The pagination applica-

tion contains an arrow which fetches a value from a global cache with the type

α; β \ (∅, {α}) which either returns the value in the cache or throws the key

on cache miss. The type of this function is parametric so that it can be used

in multiple contexts (and the cache is not bound to a concrete type of values).

Lastly, the sorting application’s main arrow has the following type.

(Number, Bool, Number) ; 〈loop : (Number, Bool, Number), halt : >〉

This arrow has three parameters: the index of the current element, whether

or not an inversion was found on this pass, and how many elements have been

57

previously sorted. This arrow returns the arguments for the next pass when

sorting should continue, and no meaningful value when sorting has completed.

7.3.3. Inference Overhead

For each application described above, we determined the overhead gener-

ated by inferring types of arrows at composition time. Figure 39 shows these

results. This excludes type checks which occur at arrow execution time, which

are discussed in Section 7.3.4.

App Arrows Disabled Enabled Parsing

Memory 132 9.28 42.06 4.64

Whack-a-Mole 314 13.58 100.98 8.42

Music Player 178 9.82 66.66 7.54

Sorting Animation 144 9.14 50.22 10.34

Pagination 105 10.02 53.42 8.52

Figure 39: The elapsed composition-time in each application (time in milliseconds).

The third column, Disable gives the time required to compose the arrow

with type checking disabled. The fourth column, Enabled gives the time re-

quired to compose the arrow when inferring (and minimizing) types. The fifth

column, Parsing shows how much of this time is required to read and parse

type annotations in functions.

These measurements are the median of fifty runs in Google Chrome Version

54.0.2840.71 (64-bit). No warm-up runs were measured in order to ensure that

the JIT cache stays cold between runs (as it would occur in practice).

These results show that the inference overhead is a function of both the

number of total inferred types as well as the size of these types. The types of

the first four applications are relatively simple. The median inference overhead

per arrow is around 340µs for these applications. However, the pagination

application has a median inference overhead per arrow of 500µs. This is because

the expected value returned by the server has the following (rather large) type

58

which must be unified multiple times during composition.

{query : String, prev : Number, next : Number, count : Number,

rangeLeft : Number, rangeRight : Number, results : [{

id : Number, name : String, category : String, subCategory : String,

pricePerUnit : Number, margin : Number}]}

Although there is an increase in runtime when inferring arrow types, this

cost is paid only once at application startup. We find this cost to be negligible

in the context of asynchronous applications (especially in the browser) which

spend the majority of their time blocking on external input (and, in the case of

browsers, waiting at startup for remote dependencies to download).

In addition, this cost is generally paid only during development. If the

startup cost is considered too high for a production environment, type checking

can be disabled with no visible difference to the end user of an application.

Types are used to generate more specific error messages when composing and

maintaining arrows. These messages, however, will provide no benefit to the

user of a broken application containing ill-composed arrows.

Currently, the implementation for type inference uses fixed-point iteration

over a constraint set before pruning in order to attain the closure. This imple-

mentation is unoptimized, and these results are not necessarily indicative of the

true overhead of the technique in general. Our future work includes an attempt

to reduce this overhead.

7.3.4. Runtime Type Checking Overhead

For each application described above, we determined the overhead generated

by the type checks inserted at the boundaries of lifted functions and Ajax arrows.

Figure 40 shows these results.

The second column, Total Time gives the total sampled runtime of the

arrow under execution. The third column, Checks, gives the number of runtime

type checks performed. The fourth column, Overhead, is the total elapsed time

spent performing runtime type checks.

59

App Total Time Checks Overhead

Memory 38.065s 522 3.16ms

Whack-a-Mole 56.422s 752 4.16ms

Music Player 39.781s 1,065 8.35ms

Sorting Animation 48.034s 1,553 9.12ms

Pagination 26.540s 837 10.66ms

Figure 40: The total execution-time overhead in each application.

Each application was executed in a way indicative of its standard use. While

the Memory arrow was running, the user selected twenty pairs of cards including

three matches. While the Whack-a-mole arrow was running, the user won two

games then lost two games. While the music player arrow was running, the

user let a track play for ten seconds then skipped to the next track. While

the sorting application arrow was running, the user shuffled the array three

times, then sorted, then shuffled three more times, then sorted again. While

the pagination arrow was running, the user entered a keyword with around

one-thousand results, paged ten pages forward and five pages backwards, then

repeated three times.

For each sample application, the time spent performing type checks during

arrow execution is negligible, contributing below 0.05% of the total runtime. The

median overhead per type check for the first four applications is 5.75µs, and the

median overhead per type check for the pagination application is 12.74µs.

The number of type checks inserted for the music player is high as one

arrow continually executes in order to update a progress element when a song

is playing. The sorting animation also has a large number of type checks, as

every step in the shuffle and sorting visualization requires multiple function calls

(select a pair of elements, indent selected, change color of selected, perform swap,

dedent selected, change color of selected).

60

7.4. Usability Study

In order to evaluate the usability of this library in practice, we asked a group

of participants to add the same feature to two (behavior-identical) versions of a

program – one written using only callbacks, and one written using arrows. The

program given to the participants implemented an image carousel which loaded

the previous or next image from a sequence (stored on a remote server) after

a button click. They were asked to modify the program so that the carousel

automatically advances on a timer. If the user presses the previous or next

buttons, the timer should pause and allow the user to control the carousel

explicitly. The timer should resume after the user is done interacting with the

buttons.

From this group, fifteen participants submitted both versions. Figure 41

provides metrics on size and correctness of submissions organized by participant.

The first group of columns gives the total number of lines of code (including

blank lines and comments) for each submission. The cell containing the number

of lines of code for the arrows solution is shaded if it was no larger than the

callbacks solution. The second group of columns notes whether or not each

submission included the requested feature such that it was functional. A feature

with observable bugs is not considered functional.

While nine of the fifteen participants (60%) were able to modify the given

arrows-based code as instructed, only seven of the fifteen participants (47%)

were able to do so using only callbacks. Five of the fifteen participants (33%)

were unable to correctly modify either template. Comparing the submissions

from participants that completed both, the arrows solution was on average

smaller.

The arrows-based submission from Participant #3 was nearly correct, but

contained the incorrect expression

loadImage.seq(next .after(1000)).any(blockOnClick)

instead of the working expression

loadImage.seq(next .after(1000).any(blockOnClick))

61

Lines of Code Functional

Participants Callbacks Arrows Callbacks Arrows

1 40 45 no no

2 55 36 no no

3 44 37 yes no

4 55 42 no no

5 64 57 no no

6 70 69 no no

7 50 41 no yes

8 49 42 no yes

9 94 49 no yes

10 39 39 yes yes

11 74 43 yes yes

12 68 52 yes yes

13 39 56 yes yes

14 64 60 yes yes

15 64 84 yes yes

Figure 41: The number of lines of code for each participant submission as well whether or not

each submission contained the functional requested feature.

which works correctly – the idea seemed correct, but was off by one character

due to expression nesting issues. This submission was considered non-functional.

The callback-based submissions from Participants #7, #8, and #9 contained

bugs related to event cancellation. In some solutions, the click handlers were

registered more than once, but no attempt was made to remove previously

bound handlers. This made the current image skip forward in the sequence by

larger and larger offsets. In other solutions, no attempt was made to make the

timer and buttons mutually exclusive, resulting in obvious and user-observable

asynchronous interference. The arrows-based submissions did not contain issues

of this nature, as the arrows handle event de-registration implicitly.

62

Even with a small sample set, we believe that these results show that arrows

can be leveraged to create asynchronous programs that are easier to correctly

implement and correctly maintain.

8. Related Work

8.1. Arrows

Arrows [1] were first formalized as a generalization of monads [2]. As monadic

type m a represents a computation delivering an a, the arrow type a b c rep-

resents a computation with input of type b delivering a c. Arrows are formally

defined by extending simply-typed lambda calculus with three constants satis-

fying nine laws. The constants arr and (>>>) are lift and compose operations,

respectively. The constant first converts an arrow from b to c into an arrow on

pairs. Our lift constructor and seq and all combinators encompass all three

operations.

Additional arrow combinators [9] have either direct or similar counterparts

in our library. For example, *** in corresponds to all and &&& corresponds to

our fanout combinator, which is encoded by sequencing split with all. We

do not have a choice combinator like |||, but our try combinator can achieve

similar effect, as discussed in Section 3.2.

Alternate arrow calculi exist with only four constants satisfying five obvious

laws [10, 11]. The laws of these calculus follow from beta and eta laws of the

lambda calculus and fit into well-known patterns. The calculi are equivalent,

and a translation scheme from one calculus to the other exists.

Arrows in Haskell. Arrows were initially implemented in Haskell using type

classes similar to monads. However, the point-free style of arrows is awkward to

use. A more convenient syntax for arrows was introduced by Paterson [12] as an

extension to Haskell so that arrows can be defined using constructs similar to the

do notation of Haskell. The main construct in this extension is arrow application

proc p -> e1 <- e2, which roughly translates to (p => e2).lift().seq(e1)

in our syntax (provided p and e1 do not have the same free variables). It would

63

be useful to have similar syntax for JavaScript arrows, though a preprocessing

step might be needed.

Arrowlets. Arrowlets is a JavaScript library for using arrows [4], providing pro-

grams the means to elegantly structure event-driven web components that are

easy to understand, modify, and reuse. The implementation of our arrows li-

brary was heavily inspired by the continuation-passing style used by Arrowlets,

as well as the asynchronous semantics of the combinators it provides.

Apart from our formalization of semantics and the addition of a type system,

our execution semantics differ in the two following areas. First, we have altered

the encoding of arrows to carry along an error continuation in addition to the

happy-path continuation. This allows us to build the try combinator, which

subsumes the semantics of ES6 Promises. Before this addition, Arrowlets would

silently swallow errors just as vanilla callbacks do without the addition of explicit

error-handling code spanning callbacks. Second, we have added a mechanism to

change the semantics of concurrently executing arrows. We found that neither

the semantics of the any combinator (first to progress) provided by Arrowlets

nor the semantics of the Promise.race method (first to complete) encoded a

sufficient set of programs by themselves. We required a way to encode both

methods without the addition of an alternate any combinator. The addition of

noemit provides a mechanism through which an individual arrow can re-define

its definition of progress so that both ends of the spectrum (as well as all middle

points) can be encoded.

Functional Reactive Programming (FRP). FRP [13] has seen an emergence in

JavaScript. FRP is a data-flow oriented paradigm in which changes to val-

ues are propagated through the system, allowing it to react to external events.

Elm [14] and Flapjax [15] are two reactive languages that use JavaScript as a

compilation target. Elm adds asynchronicity to FRP, allowing the developer to

specify potentially long-running signal computation so they may be computed

asynchronously. This prevents time leaks in the system which would make

the GUI appear unresponsive. Flapjax is structured around the event stream

64

abstraction, which allows for inter-program communication as well as commu-

nication with external services. This makes Flapjax data-flow oriented in its

composition, whereas arrows are defined to be control-flow oriented.

The use of both FRP and arrows have also been explored. Programming

with FRP signal can often lead to conspicuous time and space leaks. If signals

are defined in such a way that they model arrows (and obey the arrow laws),

these leaks can be avoided completely [16]. Arrows for FRP was further re-

fined in a model called causal commutative arrows [17], which can be optimized

through a transformation to causal commutative normal form with significant

improvement in performance over conventional implementation of arrows.

8.2. Asynchronous Programming

The JavaScript ecosystem has seen the need for improving event program-

ming idioms and has responded accordingly. jQuery 1.5 introduced deferred

objects and other popular JavaScript framework and libraries have popularized

Promises. These objects represent values which may not yet exist. Callbacks

can be composed and registered to be invoked when the desired value is actu-

ally computed. Promises allow callbacks to be registered to multiple states (e.g.

success, failure, done) of the promised value, so that different control flow paths

can be taken depending on the outcome of the asynchronous operation.

While it is a successful pattern for asynchronous callbacks, it is less powerful

than the composition of arrows which can create arbitrary control flow graphs

through combinators.

ES6 Promises. Promises4 allow a sequence of callbacks to be chained together,

flattening the dreaded ‘pyramid of doom’ into a sequence of promise then calls.

Promises also provide a means of error handling, where the thenmethod accepts

an optional error callback.

4See http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects for the

formal specification.

65

http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects

Our arrows library also encodes the core mechanism of promises, but there

are some obvious differences in execution semantics. For one, when a promise

object is created it attempts to resolve immediately. If a promise object is

composed with a callback after its resolution, it simply forwards the memo-

ized result. Arrows separate composition and execution behind an explicit run

method. This allows an arrow to be called multiple times, like a regular func-

tion, and enables features such as the repeat combinator. Promises place an

emphasis on the values which they proxy, where arrows place an emphasis on

the computation. It would be trivial to adapt our arrows library to support the

lazy nature of promises with the addition of a memoizing combinator.

Promises also implement two methods which are strongly related to the

arrow combinators presented here. The method Promise.all(ps), similar to

the all combinator, takes an iterable of promises, ps, and resolves once each

promise resolves or rejects if any promise rejects. Its resolved value is an array

of the resolved values of each promise. The method Promise.race(ps), similar

to the any combinator when the arrow inputs are wrapped in noemit, takes

an iterable of promises, ps, and resolves once any promise p resolves or rejects

once any promise p rejects. The value of the promise is the value of the first

resolved promise. Unlike the any combinator, Promise.race does not abort

the execution of the remaining promises. We believe the semantics of the any

combinator to be more useful in practice.

Promises, unlike arrows, allow functions sequenced within a promise chain to

return a new promise instance. When this happens, the resolution of the chain

depends on the resolution of the new instance. This technique is demonstrated

in Figure 42. Here, the promise chain on line 8 will continue to resolve with

the value x * 2 immediately, and the promise chain on line 9 will pause for 500

milliseconds before resolving with the value x * 2.

First-class arrows, on the other hand, are not supported – arrow composition

must be defined in-full before it is executed. This restriction promotes a more

clearly defined separation of concerns. With promises, sequencing logic is mixed

with the implicit logic required to resolve its value. With arrows, sequencing

66

1 function f1(x) { return x * 2; }

2 function f2(x) {

3 return new Promise ((resolve , reject) => {

4 setTimeout (() => resolve(x * 2), 500);

5 });

6 }

7

8 p.then(f1).then(g);

9 p.then(f2).then(g);

Figure 42: An example promise chain, showing that a function can either a value (line 1) or

another promise which resolves later (lines 2-6).

logic is explicit in the composition and does not muddle the logic of the lifted

functions. The behavior of the promises in Figure 42 can be encoded in arrows

as the following.

p.then(f1).then(g) ≡ seq(p, f1, g)

p.then(f2).then(g) ≡ seq(p, delay(500), f2, g)

Instead of returning an arrow a from f2, we insert a into the composition where

f2 would be executed (f2 is encoded as a delay arrow preceding f1). This col-

lapses the arrow composition into a single level. This pattern works in general as

an arrow can be created without being immediately executed (unlike promises).

Promises and Arrowlets attack the problem of callback composition in sim-

ilar ways, but provide a disjoint set of orthogonal features. Arrowlets provide

a means to abort an asynchronous operation, where promises follow a fire-and-

forget convention. Promises provide a means of catching an error, where Ar-

rowlets focus only on happy-path composition. Our implementation of arrows

chooses to support both sets of features.

Async/Await. The keywords async and await5 have been proposed to restore

some imperative features which were lost with the prolific use of callbacks. Any

5See https://tc39.github.io/ecmascript-asyncawait/ for the feature proposal.

67

https://tc39.github.io/ecmascript-asyncawait/

function which is annotated as async is free to use the await keyword on a

promise, which will effective yield the current thread of control to the event

loop, then resume once that promise resolves. Async functions always return a

promise (and, if they are implemented as returning a naked value, it is implicitly

wrapped in a promise). An await expression either yields the promise’s resolved

value or raises the promise’s rejection value.

1 function wait(t) {

2 return new Promise ((resolve , reject) => setTimeout (() => {

3 if (t < 500) { resolve(t * 2); }

4 else { reject(t); }

5 }, t));

6 }

7

8 async function test() {

9 try {

10 await wait (250) + await wait (750);

11 } catch (err) {

12 return err;

13 }

14 }

Figure 43: An example use of async and await in JavaScript.

Figure 43 shows an example of an async function – calling test will yield

a promise that resolves with the value 750 after one second. Each use of await

blocks until the promise resolves – concurrent execution can still be achieved

with explicit use of Promise.all.

Async and await features are merely sugar over the existing capabilities of

promises – the await keyword sequences the remainder of the function as a

resolution handler of the promise on which it awaits. Because these features

provide no additional semantics, they are equivalently as limited as promises.

Factors. Factors [18] are another interactivity abstraction. A factor represents a

state of a program which can be queried either synchronously or asynchronously.

A synchronous query takes a prompt value and blocks until a response value is

produced. An asynchronous query takes a prompt value and returns immedi-

68

ately, but produces a future factor which serves as a handle of the computation.

Because queries return a continuation factor, state is explicitly tracked. Factors

require an affine type system to ensure that future factors are not used more

than once.

Semantics. Our semantics were intended to cover only the interesting aspects of

JavaScript’s event loop in relation to arrow composition and execution. Maffeis

et al. [19] present a small-step operational semantics strictly conforming to the

ECMAScript (ECMA262-3) specification. These semantics cover most of the

semantically interesting parts of JavaScript (leaving out constructs which are

not insightful, e.g. switch and for, and regular expression matching), including

heap objects and prototype lookup. Similarly, a core calculus for JavaScript,

dubbed λJS , was developed alongside a small-step operational semantics and a

desugaring algorithm which translates JavaScript into the core calculus, showing

equivalence [20].

8.3. Static Analysis of Dynamic Languages

Our arrows library introduces an optional type system which helps users

detect errors early in the development cycle. As dynamic languages such as

JavaScript and Ruby have gained popularity in recent years, a number of sys-

tems have been develop to analyze programs written in these languages to

achieve the same goal.

For instance, TeJaS [21] is a type system framework that is designed to

retrofit customized type systems to JavaScript programs. This framework has

been applied to analyzing the safety of third-party scripts [22], violation of

private browsing in Firefox extensions [23], and the correctness of jQuery pro-

grams [24]. To handle features of the entire JavaScript, TeJaS has included

complex type constructs such as recursive types, bounded quantification, union

types, intersection types, special treatment of fields, and kinding. To type check

a program, users may need to slightly refactor the program and add type anno-

tations to functions, objects, and variables. TeJaS supports limited local type

inference and provides syntactic sugar to lower annotation overhead.

69

Since TeJaS is a type system for the entirety of JavaScript, it is much more

complex than ours, which does not have to consider problematic features such as

first class functions, object prototypes, mutable fields, or object extension. Our

arrows library checks the arguments and the result of a lifted function but it

does not check the function body, which can be arbitrarily complex. This design

choice is ideal for arrow combinators as users can partition the functionalities

of an application into small functions with concentrated tasks while the arrows

library can ensure that correct values are transferred between functions. Despite

the simplicity of our system, we have not found it to be limiting in its intended

applications. Also, our type system uses constrained types to encode recursively

bounded quantification and it infers types for composed arrows, which very

easily outnumber the lifted functions.

Other than type systems, errors in dynamic languages can be detected

through program analysis. A recent work on static analysis of event callbacks in

Node.js detects errors such as dead listeners, incorrect sequencing of synchronous

and asynchronous calls, and incorrect sequencing of callbacks [25]. Their tool,

Radar, constructs an event call graph and performs an event-sensitive and

listener-sensitive dataflow analysis. The tool seems to be able to detect known

errors and has manageable false positives. While our arrows library does not

perform a similar analysis to detect dead listeners or incorrect sequencing, the

event semantics of both our frameworks are similar.

Also, the kind of errors detected by Radar are less likely to happen if the

programs are implemented with arrows. For example, dead listener error is

caused by registering callbacks on event source that does not emit such event.

Using arrows, the event source would be implemented as an element arrow and

to listen to an event on that source, users need to sequence an event arrow and

a handler arrow after the element arrow. If users attempt to sequence an event

arrow after an incompatible event source, a typing error will be detected since

the type of the event arrow specifies the type of element that can emit that

event.

Incorrect sequencing of callbacks is less likely with arrows as well, since

70

arrow composition requires explicit scheduling of the arrows through seq, any,

or all combinators. Users are less likely to have incorrect assumption that an

asynchronous call will complete before the next synchronous or asynchronous

call since they have to explicitly specify whether the ordering is sequential or

concurrent, which is enforced by the arrow runtime.

Lastly, our separation of arrow composition and execution phases has some

similarity to a style of static analysis called just-in-time static type checking

for dynamic languages. Ren and Foster recently developed a static type check-

ing tool called Hummingbird, which type checks Ruby code in the presence of

metaprogramming [26]. The idea of Hummingbird is to utilize the metapro-

gramming code of Ruby to dynamically generate types, which are used to check

each method before it is called. The computed types are cached until they are

invalidated by changes in the type environment.

Unlike arrows, Ruby programs may not have distinct metaprogramming

phase and actual computation phase. Therefore, a Ruby method may be type

checked multiple times during its execution. Hummingbird also injects dynamic

type checks to verify arguments passed to methods if the arguments come from

unchecked code. While caching type information reduces overhead of Hum-

mingbird, running a program with type check enabled still slows down a Ruby

program up to five times.

Our arrows library, however, only needs to infer types once before actual

asynchronous computation starts. The dynamic checks of arrows take a very

small fraction of the overall runtime. Moreover, since the type of an arrow

does not depend on runtime values, we can turn off type inference for deployed

applications while Hummingbird may not have such an option since the types

can be dynamically modified.

9. Conclusion

We have presented an arrows library for implementing asynchronous compu-

tation in JavaScript. Applications developed with arrows are more modular and

71

reusable. The program semantics resembles that of the sequential programs and

the cancellation semantics of arrows results in more predictable program behav-

ior and reduces the chances of producing undesirable side effects. Our arrows

library is also expressive as it encodes most of the semantics of ES6 Promises

including its error handling mechanism.

More importantly, our arrows library has a composition-time type checker

which enables type-directed development. This optional type checker helps iden-

tify errors that are difficult to track in asynchronous JavaScript programs. The

type checker can be disabled before application deployment without changing

program semantics to eliminate the runtime overhead associated with types.

While our arrows library has demonstrated utility in a number of small

applications, as future work, we plan to evaluate it in the context of larger ap-

plications and libraries. We believe that our arrows library provides a solid core

and additional constructors and combinators can be developed incrementally to

provide additional domain-specific features.

References

[1] J. Hughes, Generalising Monads to Arrows, Science of Computer Program-

ming 37 (1998) 67–111.

[2] P. Wadler, The essence of functional programming, in: Proceedings of the

19th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, ACM, 1992, pp. 1–14.

[3] S. D. Swierstra, L. Duponcheel, Deterministic, error-correcting combinator

parsers, in: International School on Advanced Functional Programming,

Springer, 1996, pp. 184–207.

[4] Y. P. Khoo, M. Hicks, J. S. Foster, V. Sazawal, Directing JavaScript with

Arrows, in: Proceedings of the 5th Symposium on Dynamic Languages,

DLS ’09, ACM, New York, NY, USA, 2009, pp. 49–58.

72

[5] E. Fritz, T. Zhao, Type inference of asynchronous arrows in JavaScript,

Reactive and Event-based Languages & Systems (2015).

[6] J. Eifrig, S. Smith, V. Trifonov, Type inference for recursively constrained

types and its application to OOP, Electronic Notes in Theoretical Com-

puter Science 1 (1995) 132–153.

[7] A. K. Wright, M. Felleisen, A syntactic approach to type soundness, Infor-

mation and computation 115 (1) (1994) 38–94.

[8] E. Fritz, J. Antony, T. Zhao, Arrows in commercial web applications,

HotWeb 2016 (2016).

[9] J. Hughes, Programming with Arrows, in: 5th International Summer

School on Advanced Functional Programming(LNCS 3622), Springer, 2005,

pp. 73–129.

[10] S. Lindley, P. Wadler, J. Yallop, The arrow calculus, Journal of Functional

Programming 20 (01) (2010) 51–69.

[11] S. Lindley, P. Wadler, J. Yallop, Idioms are oblivious, arrows are meticu-

lous, monads are promiscuous, Electronic Notes in Theoretical Computer

Science 229 (5) (2011) 97–117.

[12] R. Paterson, A new notation for Arrows, in: Internationl Conference on

Functional Programming (ICFP), 2001, pp. 229–240.

[13] Z. Wan, P. Hudak, Functional reactive programming from first principles,

in: ACM SIGPLAN Notices, Vol. 35, ACM, 2000, pp. 242–252.

[14] E. Czaplicki, S. Chong, Asynchronous functional reactive programming for

GUIs, in: ACM SIGPLAN Notices, Vol. 48, ACM, 2013, pp. 411–422.

[15] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,

A. Bromfield, S. Krishnamurthi, Flapjax: a programming language for

Ajax applications, in: ACM SIGPLAN Notices, Vol. 44, ACM, 2009, pp.

1–20.

73

[16] P. Hudak, A. Courtney, H. Nilsson, J. Peterson, Arrows, robots, and

functional reactive programming, in: Advanced Functional Programming,

Springer, 2003, pp. 159–187.

[17] H. Liu, E. Cheng, P. Hudak, Causal commutative Arrows and their opti-

mization, in: Proceedings of the 14th ACM SIGPLAN International Con-

ference on Functional Programming (ICFP), 2009.

[18] S. K. Muller, W. A. Duff, U. A. Acar, Practical abstractions for concurrent

interactive programming, Tech. rep., Carnegie Mellon University (2015).

[19] S. Maffeis, J. C. Mitchell, A. Taly, An operational semantics for JavaScript,

in: Programming languages and systems, Springer, 2008, pp. 307–325.

[20] A. Guha, C. Saftoiu, S. Krishnamurthi, The essence of JavaScript, in:

ECOOP 2010–Object-Oriented Programming, Springer, 2010, pp. 126–150.

[21] B. S. Lerner, J. G. Politz, A. Guha, S. Krishnamurthi, TeJaS: retrofitting

type systems for JavaScript, in: ACM SIGPLAN Notices, Vol. 49, ACM,

2013.

[22] J. G. Politz, S. A. Eliopoulos, A. Guha, S. Krishnamurthi, ADsafety: type-

based verification of JavaScript sandboxing, in: USENIX Security Sympo-

sium, 2011.

[23] B. S. Lerner, L. Elberty, J. Li, S. Krishnamurthi, Combining form and

function: Static types for JQuery programs, in: European Conference on

Object-Oriented Programming (ECOOP), 2013.

[24] B. S. Lerner, L. Elberty, N. Poole, S. Krishnamurthi, Verifying web browser

extensions’ compliance with private browsing mode, in: European Sympo-

sium on Research in Computer Security (ESORICS), 2013.

[25] M. Madsen, F. Tip, O. Lhotak, Static analysis of event-driven node.js

JavaScript applications, in: AMC SIGPLAN Notices, Vol. 50, ACM, 2015.

74

[26] B. M. Ren, J. S. Foster, Just-in-time static type checking for dynamic

languages, in: Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation, ACM, 2016.

75

Appendix A. Type Simplification

Definition 1 (Simplified). An arrow type is simplified if it is bound-minimal

(Definition 2), variable-minimal (Definition 4), and pruned (Definition 5).

Definition 2 (Bound Minimal). An arrow type τin ; τout \ (C, E) is bound-

minimal if every type variable in the arrow type has at most one concrete upper

bound and at most one concrete lower bound. A type is concrete if it contains

no type variables. We can bound-minimize an arrow type by collapsing the

concrete bounds of a type variable.

We can collect the concrete lower and upper bounds of a type variable α,

denoted b↓(α) and b↑(α), respectively.

b↓(α) = {τi | τi ≤ α ∈ C and τi is concrete}

b↑(α) = {τi | α ≤ τi ∈ C and τi is concrete}

We can then bound-minimize a constraint set C by collapsing the lower and

upper bounds for each type variable α. We can collapse the lower bounds of

a type variable α and the upper bounds of a type variable β by applying the

following transformations to C

C ′ = (C \ {τi ≤ α | τi ∈ b↓(α)}) ∪ {(∨ b↓(α)) ≤ α}

C ′ = (C \ {β ≤ τi | τi ∈ b↑(β)}) ∪ {β ≤ (∧ b↑(β))}

where (∨ T) and (∧ T) denote the least upper bound and greatest lower bound

of the set of types T, respectively. An upper bound necessarily exists between

any two concrete types due to the presence >, but a lower bound may not exist

due to the absence of a bottom type.

If a non-existent lower bound is needed to simplify an arrow type, then there

is a type variable α for which no concrete type satisfying the set of constraints

exists. We consider such arrow types malformed. For example, an arrow of the

following type accepts an (impossible) value whose type must be simultaneously

a lower bound of Number and a lower bound of String.

α; Number \ ({α ≤ Number, α ≤ String}, ∅)

76

Such an arrow type, while consistent, results in a composition error as it cannot

be supplied any reasonable value at runtime.

Definition 3 (Type Variable Position). A type variable α may occur in neg-

ative position, denoted α−, in positive position, denoted α+, in both positions

simultaneously, denoted α±, or in neither position, denoted α, relative to an

arrow type τin ; τout \ (C, E).

Given a constraint τ ≤ τ ′, a type variable α ∈ τ , and a type variable β ∈ τ ′,

we say that α lower-bounds β and β upper-bounds α.

A type variable α occurs in negative position if α occurs in either τin or if

α upper-bounds some type variable β− or β±. Symmetrically, a type variable

α occurs in positive position if α occurs in τout or E, or if α lower-bounds some

type variable β+ or β±.

Definition 4 (Variable-Minimal). We can variable-minimize an arrow type

τin ; τout \ (C, E) by constructing a substitution σ = [τi/αi] by the rules

below and replacing all occurrences of the type variable αi by the type τi. An

arrow type is variable-minimal if no such substitution can be created.

We add the mapping [τ/α] to the substitution σ if one of the following

conditions hold.

1. {τ ≤ α, α ≤ τ} ⊆ C,

2. α− ≤ τ ∈ C and α ≤ τ ′ 6∈ C ∀τ ′ 6= τ , or

3. τ ≤ α+ ∈ C and τ ′ ≤ α 6∈ C ∀τ ′ 6= τ .

If [β/α] is being added to a substitution σ which already contains the map-

ping [τ/α], then we instead add the mapping [τ/β] to avoid re-introducing a

type variable that is being substituted.

We substitute type variables in negative position with their sole upper bound

and type variables in positive position with their sole lower bound. Negative

position variables represent a constraint on the input of an arrow, as positive

position variables represent a constraint on the output of an arrow (normal or

77

exceptional). Therefore, negative position variables are concerned only with an

upper bound, and positive position variables are concerned only with a lower

bound.

Applying a substitution may alter the closure or consistency properties of

a set of constraints and may require the closure set to be recalculated and the

consistency rechecked.

We substitute a type variable α with the type τ if τ is both an upper and

lower bound of α, as α = τ is a necessary condition for a solution to the

constraint set.

Uls-Top

τ ≤ >

Uls-Self

τ ≤ τ

Uls-Upper

α+ ≤ τ

Uls-Lower

τ ≤ α−

Uls-NonVar

τ 6∈ A τ ′ 6∈ A

τ ≤ τ ′

Uls-LowerUnknown

α 6∈ τin α 6∈ τout ∪ E

α ≤ β

Uls-UpperUnknown

α 6∈ τin α 6∈ τout ∪ E

β ≤ α

Figure A.44: Useless constraint elimination rules.

Definition 5 (Pruned). An arrow type τin ; τout \ (C, E) is pruned if every

constraint c ∈ C is not immediately useless. Constraints matching a form in

Figure A.44 are considered useless. A constraint set can be pruned by repeatedly

removing all useless constraints.

78

Appendix B. Proof of Theorem 1 (See page 50)

Theorem 1 (Preservation of types under translation). If a is well-typed with

respect to a typing context Γ, then JaK has a symmetric type with respect to a

typing context Γ̂. Formally,

Γ ` a : τ1 ; τ2 \ (C, E)

=⇒ Γ̂ ` JaK : τ1 → τp → (τ2 → >)→ (τ3 → >)→ > \ Ĉ

where CE = C ∪ {τ ≤ τ3 | τ ∈ E} and closure(CE) ⊆ closure(Ĉ).

Proof. We prove by case analysis on a.

Case [a = fix(ω ⇒ a′)]. Let T and T′ denote the following function types.

T = τ1 → τp → (τ2 → >)→ (τ3 → >)→ >

T′ = τ ′1 → τp → (τ ′2 → >)→ (τ ′3 → >)→ >

By rule (T-Fix), we have Γ, ω : τ1 ; τ2 ` α′ : τ ′1 ; τ ′2 \ (C ′, E) where

C = C ′ ∪ {τ1 ≤ τ ′1, τ
′
2 ≤ τ2} and by the induction hypothesis on a′, we have

Γ̂, ω : T ` Ja′K : T′ \ Ĉ ′ where C ′ ∪ {τ ≤ τ ′3 | τ ∈ E} ⊆ Ĉ ′. We can

type the translation by rule (TA-Fix) as follows. The rules (TA-Sub) and

(TA-Simplify) are used to unify the type of Ja′K and T.

Γ̂ ` fix(λω.Ja′K) : T \ Ĉ ′ ∪ {τ1 ≤ τ ′1, τ ′2 ≤ τ2, τ ′3 ≤ τ3}︸ ︷︷ ︸
simplified from T′≤T

Thus, closure(CE ∪ {τ ≤ τ ′3 | τ ∈ E} ∪ {τ ′3 ≤ τ3}) ⊆ closure(Ĉ).

Case [a = ω]. By rule (T-Omega), Γ̂ ` ω : τ1 ; τ2 where C = E = ∅. By rule

(TA-Omega) and definition of Γ̂, we have the following for some τ3.

Γ̂ ` ω : τ1 → τp → (τ2 → >)→ (τ3 → >)→ >

79

For the remaining cases, JaK ≡ λx.λp.λk.λh.e for some x, p, k, h, and e.

Thus, it is sufficient to show the following.

Γ̂, (x : τ1), (p : τp), (k : τ2 → >), (h : τ3 → >) ` e : > \ Ĉ

For convenience, we define Γ′ to be the typing context which which the arrow

body is typed, i.e. let Γ′ = Γ̂, (x : τ1), (p : τp), (k : τ2 → >), (h : τ3 → >).

Case [a = lift(f)]. By rule (T-Lift), AnnotF(f) = τ1 → τ2 \ (C, E). The

remainder of this case follows directly by deriving a type for the translated arrow

body e by rules (TA-Host-App), (TA-Case), and (TA-App).

Γ′ ` case (f x) of succ(y)⇒ k y,

fail(y)⇒ h y : > \ C ∪ {τ ≤ α | τ ∈ E}︸ ︷︷ ︸
from typing of (f x)

∪ {α ≤ τ3}

Case [a = ajax(c)]. By rule (T-Ajax), AnnotF(c) = τ1 → τU \ (C1, E1) and

AnnotV(c) = τ2 \ C2 where τU denotes the type {url : String}, C = C1 ∪ C2,

and E = E1 ∪ {AjaxError}. By rule (T-Host-App), c x yields a value of type

〈succ : τU , fail : α〉 \ {τ ≤ α | τ ∈ E1} with respect to Γ′. Now, we derive a

type for the async callback body e′ by rules (TA-Case), (TA-Advance), and

(TA-App). This derivation assumes a type for the unbound variable v, which

we unify in the following.

Γ′, v : 〈succ : τ2, fail : τ3〉 ` e′ = case v of succ(z)⇒ adv p; k z,

fail(z)⇒ h z : >

The remainder of this case follows directly by deriving a type for the trans-

lated arrow body e by rules (TA-Case), (TA-Async), (TA-Ajax-Event),

and (TA-Abs).

Γ′ ` case c x of succ(y)⇒ async

yields 〈succ : τ2, fail : AjaxError〉 \ C2︷ ︸︸ ︷
ajaxEv(y, τ2 \ C2, {AjaxError}) p λv.e′,

fail(y)⇒ h y : > \ Ĉ

80

The constraint set above is equivalent to the following, where the additional con-

straints originate from application rules (TA-Sub) and (TA-Simplify) which

are used to make the type of v consistent with its use as the async callback, and

the type of h consistent with its argument y.

C1 ∪ C2 ∪ {
from subsumption of v︷ ︸︸ ︷
AjaxError ≤ τ3, α ≤ τ3︸ ︷︷ ︸

from simplifying h

} ∪ {τ ≤ α | τ ∈ E1}

Case [a = delay(n)]. By rule (T-Delay), n is a number and C = E = ∅. The

remainder of this case follows directly by deriving a type for the translated ar-

row body e by rules (TA-Async), (TA-Time-Event), (TA-Abs), (TA-Case),

(TA-Advance), (TA-App), and (TA-Unit).

Γ′ ` async timeEv(n, >, ∅)︸ ︷︷ ︸
yields 〈succ : >, fail : >〉

p λv.case v of succ(y)⇒ adv p; k x,

fail(y)⇒ () : > \ ∅

Case [a = seq(a1, a2)]. By rule (T-Seq), the types of a1 and a2 are respectively

τ1 ; τ ′1 \ (C1, E1) and τ ′2 ; τ2 \ (C2, E2) where C = C1 ∪C2 ∪{τ ′1 ≤ τ ′2} and

E = E1 ∪ E2. By the induction hypothesis on a1 and a2,

Γ̂ ` Ja1K : τ1 → τp → (τ ′1 → >)→ (τ13 → >)→ > \ Ĉ1

Γ̂ ` Ja2K : τ ′2 → τp → (τ2 → >)→ (τ23 → >)→ > \ Ĉ2

where C1 ∪ {τ ≤ τ13 | τ ∈ E1} ⊆ Ĉ1 and C2 ∪ {τ ≤ τ23 | τ ∈ E2} ⊆ Ĉ2.

The remainder of this case follows directly by deriving a type for the translated

arrow body e by rules (TA-Arrow-App) and (TA-Abs).

Γ′ ` Ja1K • (x, p, λy.

Ja2K • (y, p, k, h), h) : > \ Ĉ1 ∪ Ĉ2 ∪ {

from simplifying λy term︷ ︸︸ ︷
τ ′1 ≤ τ ′2, τ13 ≤ τ3, τ23 ≤ τ3︸ ︷︷ ︸

from simplifying h

}

The additional constraints originate from application of rules (TA-Sub) and

(TA-Simplify) which are used to make the type of the abstraction consistent

with its use as Ja1K’s success callback, and the type of h consistent with its

use in as failure callbacks of both Ja1K and Ja2K. The constraint set above is a

81

superset of the following.

C1 ∪ C2 ∪ {τ ≤ τ13 | τ ∈ E1} ∪ {τ ≤ τ23 | τ ∈ E2} ∪ {τ ′1 ≤ τ ′2, τ13 ≤ τ3, τ23 ≤ τ3}

The missing constraints {τ ≤ τ3 | τ ∈ E} are introduced via transitive closure

rules.

Case [a = all(a1, a2)]. By rule (T-All), the types of a1 and a2 are respectively

τ11 ; τ12 \ (C1, E1) and τ21 ; τ22 \ (C2, E2) where C = C1 ∪C2, E = E1 ∪E2,

τ1 = (τ11 , τ
2
1), and τ2 = (τ12 , τ

2
2). By the induction hypothesis on a1 and a2,

Γ̂ ` Ja1K : τ11 → τp → (τ12 → >)→ (τ13 → >)→ > \ Ĉ1

Γ̂ ` Ja2K : τ21 → τp → (τ22 → >)→ (τ23 → >)→ > \ Ĉ2

where C1 ∪ {τ ≤ τ13 | τ ∈ E1} ⊆ Ĉ1 and C2 ∪ {τ ≤ τ23 | τ ∈ E2} ⊆ Ĉ2.

The remainder of this case follows directly by deriving a type for the translated

arrow body e by rules (TA-Arrow-App), (TA-Proj), (TA-Abs), (TA-App),

and (TA-Tuple).

Γ′ `Ja1K • (x[0], p, λy.

Ja2K • (x[1], p, λz.k (y, z), h), h) : > \ Ĉ1 ∪ Ĉ2 ∪ {

from simplifying h︷ ︸︸ ︷
τ13 ≤ τ3, τ23 ≤ τ3}

The additional constraints originate from application of rules (TA-Sub) and

(TA-Simplify) which are used to make the type of h consistent with its use as

the failure callback of both Ja1K and Ja2K.

Case [a = try(a1, a2, a3)]. By rule (T-Try), the types of a1, a2, and a3 are

respectively τ1 ; τ12 \ (C1, E1), τ21 ; τ22 \ (C2, E2), and τ31 ; τ32 \ (C3, E3)

where

C = C1 ∪ C2 ∪ C3 ∪ {τ12 ≤ τ21 , τ22 ≤ τ2 τ32 ≤ τ2} ∪ {τ ≤ τ31 | τ ∈ E1}

and E = E2 ∪ E3. By the induction hypothesis on a1, a2, and a3,

Γ̂ ` Ja1K : τ1 → τp → (τ12 → >)→ (τ13 → >)→ > \ Ĉ1

Γ̂ ` Ja2K : τ21 → τp → (τ22 → >)→ (τ23 → >)→ > \ Ĉ2

Γ̂ ` Ja3K : τ31 → τp → (τ32 → >)→ (τ33 → >)→ > \ Ĉ3

82

where C1 ∪ {τ ≤ τ13 | τ ∈ E1} ⊆ Ĉ1, C2 ∪ {τ ≤ τ23 | τ ∈ E2} ⊆ Ĉ2, and

C3 ∪ {τ ≤ τ33 | τ ∈ E3} ⊆ Ĉ3. The remainder of this case follows directly by

deriving a type for the translated arrow body e by rules (TA-Arrow-App),

(TA-Abs), (TA-Seq), and (TA-Cancel).

Γ′ ` Ja1K • (x, P 1
i :: p,

λy.Ja2K • (y, p, k, h),

λy.cancel P 1
i :: p; Ja3K • (y, p, k, h)) : > \ Ĉ

The constraint set Ĉ is a superset of the following, where the additional con-

straints originate from application of rules (TA-Sub) and (TA-Simplify) which

are used to make the type of the abstractions consistent with the their use as

the success and failure callbacks of Ja1K, and the type of k and h consistent with

their use as success and failure callbacks, respectively, of Ja2K and Ja3K.

C1 ∪ C2 ∪ C3 ∪ {τ ≤ τ13 | τ ∈ E1} ∪ {τ ≤ τ23 | τ ∈ E2} ∪ {τ ≤ τ33 | τ ∈ E3} ∪

{τ22 ≤ τ2, τ32 ≤ τ2︸ ︷︷ ︸
from simplifying k

} ∪ {τ23 ≤ τ3, τ33 ≤ τ3︸ ︷︷ ︸
from simplifying h

} ∪ {τ12 ≤ τ21 , τ13 ≤ τ31︸ ︷︷ ︸
from simplifying λy terms

}

The missing constraints {τ ≤ τ3 | τ ∈ E2 ∪ E3} are introduced via transitive

closure rules.

Case [a = any(a1, a2)]. By rule (T-All), the types of a1 and a2 are respectively

τ11 ; τ12 \ (C1, E1) and τ21 ; τ22 \ (C2, E2) where

C = C1 ∪ C2 ∪ {τ1 ≤ τ11 , τ1 ≤ τ21 , τ12 ≤ τ2, τ12 ≤ τ2}

and E = E1 ∪ E2. By the induction hypothesis on a1 and a2,

Γ̂ ` Ja1K : τ11 → τp → (τ12 → >)→ (τ13 → >)→ > \ Ĉ1

Γ̂ ` Ja2K : τ22 → τp → (τ22 → >)→ (τ23 → >)→ > \ Ĉ2

where C1 ∪ {τ ≤ τ13 | τ ∈ E1} ⊆ Ĉ1 and C2 ∪ {τ ≤ τ23 | τ ∈ E2} ⊆ Ĉ2.

The remainder of this case follows directly by deriving a type for the translated

arrow body e by rules (TA-Seq), (TA-Arrow-App), and (TA-Prog).

Γ′ ` Ja1K • (x, P 1
i :: p, k, h); Ja2K • (x, P 2

i :: p, k, h) : > \ Ĉ

83

The constraint set Ĉ is a superset of the following, where the additional con-

straints originate from application of rules (TA-Sub) and (TA-Simplify) which

are used to make the type of k and h consistent with its use as the success and

failure callbacks of both Ja1K and Ja2K, and the type of x consistent with its use

as a parameter to both Ja1K and Ja2K.

C1 ∪ {τ ≤ τ13 | τ ∈ E1} ∪ C2 ∪ {τ ≤ τ23 | τ ∈ E2} ∪

{τ1 ≤ τ11 , τ1 ≤ τ21︸ ︷︷ ︸
from subsumption of x

, τ12 ≤ τ2, τ22 ≤ τ2︸ ︷︷ ︸
from simplifying k

, τ13 ≤ τ3, τ23 ≤ τ3︸ ︷︷ ︸
from simplifying h

}

The missing constraints {τ ≤ τ3 | τ ∈ E2 ∪ E3} are introduced via transitive

closure rules.

Case [a = noemit(a′)]. By rule (T-NoEmit), Γ′ ` a′ : τ1 ; τ2 \ (C, E). By

the induction hypothesis,

Γ̂ ` Ja′K : τ1 → τp → (τ2 → >)→ (τ3 → >)→ > \ Ĉ ′

where CE ⊆ Ĉ ′. The remainder of this case follows directly by deriving a type

for the translated body e by rules (TA-Arrow-App), (TA-Prog), (TA-Abs),

(TA-Seq), (TA-Advance), and (TA-App).

Γ′ ` Ja′K • (x, Qi :: p, λy.adv p; k y, h) : > \ Ĉ ′

This completes case analysis on a, and the proof.

84

Appendix C. Proof of Theorem 2 (See page 51)

Theorem 2 (Preservation of ∆). If ∆, ê → ∆′, ê′, ∆ is well-formed, and

Γ ` ê :
→
τ \ C, then ∆′ is well-formed.

Proof. We prove by case analysis on ê.

Case [E [e0]]. ∆′ is well-formed by the induction hypothesis on e0.

Case [async ve vp λx.e0]. By rule (TA-Async), we have the following.

Γ̂ ` ve : 〈succ : τ1, fail : τ2〉 \ C1 Γ̂ ` vp : τp Γ̂ ` λx.e0 : τ3 → > \ C2

Γ̂ ` async ve vp λx.e0 : > \ C1 ∪ C2 ∪ {〈succ : τ1, fail : τ2〉 ≤ τ3}

Each ve ∈ ∆ is well-formed and, by Definition 1, ve 7→ (vp, λx.e0) is well-typed.

By rule (E-Async), ∆′ = ∆∪{ve 7→ (vp, λx.e0)}. Therefore, ∆′ is well-formed.

Cases [‹v›], [adv vp] and [cancel vp]. For each case, the rules (E-Event),

(E-Advance), (E-Advance-Empty), and (E-Cancel) guarantee ∆′ ⊆ ∆.

Therefore, each ve ∈ ∆′ is well-typed and ∆′ is well-formed.

In all other cases, ∆′ = ∆ and the proof is trivial. This completes case analysis

on e, and the proof.

85

Appendix D. Proof of Theorem 3 (See page 51)

Lemma 1 (Substitution). If Γ̂, x :
→
τ
′
` ê :

→
τ \ C, Γ̂ ` v :

→
τ
′
\ C ′, and C ∪C ′

is consistent, then Γ̂ ` [v/x]ê :
→
τ \ Ĉ such that C ⊆ Ĉ ⊆ C ∪ C ′.

Proof. For simplicity, we assume that each variable introduced (via abstraction,

fix, and case) is done so only once. We prove by case analysis on ê.

Case [x]. The type of x is given by the typing context Γ̂. As [v/x]x = v, the

type of [v/x]x is assumed, as follows.

Γ̂, x :
→
τ
′
` x :

→
τ
′
\ ∅ Γ̂ ` [v/x]x :

→
τ
′
\ C ′

Case [y]. This case trivially preserves types as [v/x]y = y for all x 6= y and the

type of y is identical before and after substitution.

Γ̂, x :
→
τ
′
` y :

→
τ \ C Γ̂ ` [v/x]y :

→
τ \ C

The value cases are trivial. All other cases (abstraction, application, sequence,

tuple, projection, tagged expressions, case, fix, arrow application, async, and

advance) hold by trivial application of the expression’s typing rule and the

inductive hypothesis.

Theorem 3 (Preservation of Γ̂). If ∆, ê → ∆′, ê′, ∆ is well-formed, and

Γ̂ ` ê :
→
τ \ C, then ∃→τ

′
\ C ′ such that Γ̂ ` ê′ :

→
τ
′
\ C ′ and one of the following

conditions hold.

1. ê = ‹e›,

2. ê 6= ‹e›,
→
τ =

→
τ
′
and closure(C ′) ⊆ closure(C), or

3. ê 6= ‹e›,
→
τ 6= →τ

′
and closure(C ′ ∪ {→τ

′
≤ →τ }) ⊆ closure(C).

Proof. We prove by case analysis on ê.

Case [E [e0]]. ∆, e0 → ∆′, e′0 by the induction hypothesis and ê′ = E [e′0] by

rule (E-Congruence). It is straightforward to show by case analysis on the

form of E that this case preserves types.

86

Case [λx.e0 v]. By rule (E-App), ê′ = [v/x]e0. We have the following by rules

(TA-App) and (TA-Abs).

Γ̂, x :
→
τ1 ` e0 :

→
τ2 \ C1

Γ̂ ` λx.e0 :
→
τ1 →

→
τ2 \ C1 Γ̂ ` v :

→
τ3 \ C2

Γ̂ ` λx.e0 v :
→
τ2 \ C1 ∪ C2 ∪ {

→
τ3 ≤

→
τ1}

By rule (TA-Sub), we have the following.

Γ̂ ` v :
→
τ3 \ C2

Γ̂ ` v :
→
τ1 \ C2 ∪ {

→
τ3 ≤

→
τ1}

By the premise above and the substitution lemma, Γ̂ ` [v/x]e0 :
→
τ2 \ Ĉ, where

C1 ⊆ Ĉ ⊆ C1 ∪ C2 ∪ {
→
τ3 ≤

→
τ1}.

Case [v; e]. By rule (E-Seq), ê′ = e. By rules (TA-Seq), we have the following.

Γ̂ ` v : > \ C1 Γ̂ ` e : > \ C2

Γ̂ ` v; e : > \ C1 ∪ C2

As C2 ⊆ C1 ∪ C2, this reduction preserves types.

Case [(vi)
i∈1..j..n[j]]. By rule (E-Proj), ê′ = vj . By rule (TA-Proj), we have

the following.
Γ̂ ` (vi)

i∈1..n : (τi)
i∈1..n \ C

Γ̂ ` (vi)
i∈1..n[j] : τj \ C

By the premise above, Γ̂ ` vj : τj \ C, and both ê and ê′ have identical types.

Case [case `k(v) of {`i(xi)⇒ ei}i∈1..k..n]. By rule (E-Case), ê′ = [v/xk]ek.

By rule (TA-Case), we have the following.

Γ̂ ` `k(v) : 〈`k : τk〉 \ C0 Γ̂, xi : τi ` ei : > \ Ci

Γ̂ ` case `k(v) of {`i(xi)⇒ ei}i∈1..k..n : > \ C0 ∪
⋃
Ci

By deconstruction of the first premise above, we have Γ̂ ` v : τk \ C0. By the

substitution lemma, we have Γ̂ ` [v/xk]ek : > \ Ĉ where Ck ⊆ Ĉ ⊆ C0 ∪ Ck.

As Ĉ ⊆ C0 ∪
⋃
Ci, this reduction preserves types.

87

Case [va • (v, vp, vk, vh)]. By rule (E-Arrow-App), we have the following.

ê′ = [v/x, vp/p, vk/k, vh/h]e0

where va = λx.λp.λk.λh.e0. Then, by rule (TA-Arrow-App) and by repeated

application of rule (TA-Abs), we have the following.

Γ̂ ` va : τ1 → τp → (τ2 → >)→ (τ3 → >)→ > \ C0 Γ̂ ` v : τ1 \ C1

Γ̂ ` vp : τp Γ̂ ` vk : τ2 → > \ C2 Γ̂ ` vh : τ3 → > \ C3

Γ̂ ` va • (v, vp, vk, vh) : > \ C0 ∪ C1 ∪ C2 ∪ C3

Γ̂, x : τ1, p : τp, k : τ2 → >, h : τ3 → > ` e0 : > \ C0

...

Γ̂ ` λx.λp.λk.λh.e0 : > \ C0

By the premise above and the substitution lemma, we have the following where

C0 ⊆ Ĉ ⊆ C0 ∪ C1 ∪ C2 ∪ C3.

Γ̂ ` [v/x, vp/p, vk/k, vh/h]e0 : > \ Ĉ

As Ĉ ⊆ C0 ∪ C1 ∪ C2 ∪ C3, this reduction preserves types.

Case [vf v]. By rule (E-Host-App), ê′ = v′ where (vf v) ↓ v′. We have the

following by rule (TA-Host-App).

AnnotF (vf) = τ1 → τ2 \ (C0, E) Γ̂ ` v : τ1 \ C1

Γ̂ ` (vf v) : 〈succ : τ2, fail : α〉 \ C0 ∪ C1 ∪ {τ ≤ α | τ ∈ E}

By rule (E-Host-App), a runtime check ensures that

∅ ` v′ : 〈succ : τ2, fail : τ3〉

where τ3 ∈ E or (E = ∅ and τ3 ∈ >). As the base types are not equivalent, we

must show that the following relation holds.

closure({〈succ : τ2, fail : τ3〉 ≤ 〈succ : τ2, fail : α〉})

⊆ closure(C0 ∪ C1 ∪ {τ ≤ α | τ ∈ E})

88

If E = ∅, then we have {> ≤ α} ⊆ C0 ∪ C1 - as α is unbounded, the left hand

side is equivalent to the trivial constraint > ≤ >, which can be discarded. If

E 6= ∅, then we have {τ3 ≤ α} ⊆ C0 ∪ C1 ∪ {τ3 ≤ α} ∪ {τ ≤ α | τ ∈ E \ {τ3}}.

Case [fix(λω.e0)]. By rule (E-Fix), ê′ = [fix(λω.e0)/ω]e0. By rule (TA-Fix),

we have the following.

T ≡ τ1 → τp → (τ2 → >)→ (τ3 → >)→ > Γ̂, ω : T ` e0 : T \ C

Γ̂ ` fix(λω.e0) : T \ C

By the second premise and the substitution lemma, we have the following.

Γ̂ ` [fix(λω.e0)/ω]e0 : T \ C

As both ê and ê′ have identical types.

Case [async ve vp λx.e0]. By rule (E-Async), e′ = (). By rule (TA-Async),

we have the following.

Γ̂ ` ve : 〈succ : τ1, fail : τ2〉 \ C1 Γ̂ ` vp : τp Γ̂ ` λx.e0 : τ3 → > \ C2

Γ̂ ` async ve ep λx.e0 : > \ C1 ∪ C2 ∪ {〈succ : τ1, fail : τ2〉 ≤ τ3}

By rule (TA-Unit), we have Γ̂ ` () : > and ∅ ⊆ C.

Case [‹v›]. In this case, we assume an event ve ∈ ∆ has completed. By rule

(E-Event), ve 7→ (vp, λx.e0) ∈ ∆ and e′ = [Resp(ve)/x]e0. Because ∆ is

well-formed and by rule (TA-Sub), we have the following.

∅ ` ve : 〈succ : τ1, fail : τ2〉 \ C1

∅ ` ve : τ3 \ C1 ∪ {〈succ : τ1, fail : τ2〉 ≤ τ3}
∅ ` λx.e : τ3 → > \ C2

By rule (TA-Abs), we have ∅, x : τ3 ` ê : > \ C2 and by the substitution lemma,

we have the following, where C2 ⊆ Ĉ ⊆ C1 ∪ C2 ∪ {〈succ : τ1, fail : τ2〉 ≤ τ3}.

∅ ` [Resp(ve)/x]e : > \ Ĉ

As ∆ is well-formed, this constraint set above is consistent and ê′ is well-typed.

89

Case [adv (P ji :: vp)]. By rule (E-Advance), ê′ = adv vp. We have the follow-

ing by rules (TA-Advance) and (TA-Prog).

P ji ∈ {P
j
i , Qi} Γ̂ ` vp : τp

Γ̂ ` P ji :: vp : τp

Γ̂ ` adv P ji :: vp : >

Γ ` vp : τp

Γ̂ ` adv vp : >

Both ê and ê′ have identical types, and this reduction preserves types.

Case [adv ep] where ep 6= (P ji :: vp). ep has the form Qji :: vp or ε. ê′ = () by

respective rules (E-Advance-Quiet) and (E-Advance-Empty) for each case,

respectively. By rules (TA-Advance), (TA-Prog), and (TA-Prog-Empty),

we have the following.

Qi ∈ {P ji , Qi} Γ̂ ` vp : τp

Γ̂ ` Qi :: vp : τp

Γ̂ ` adv Qi :: vp : >

Γ̂ ` ε : τp

Γ̂ ` adv ε : >

By rule (TA-Unit), Γ̂ ` () : > and both ê and ê′ have identical types.

Case [cancel vp]. By rule (E-Cancel), ê′ = (). By rules (TA-Cancel) and

(TA-Prog), we have the following.

Γ̂ ` vp : τp

Γ̂ ` cancel vp : >

By rule (TA-Unit), Γ̂ ` () : > and both ê and ê′ have identical types.

This completes case analysis on ê, and the proof.

90

Appendix E. Proof of Theorem 4 (See page 52)

Theorem 4 (Progress). If ∅ ` ê :
→
τ \ C and ∆ is well-formed, then one of the

following conditions holds.

1. ê = v,

2. ê = ‹v› and ∆ = ∅,

3. ∃∆′, ê′ such that ∆, ê→ ∆′, ê′, or

4. a typing premise fails in rule (E-Host-App) or (E-Event).

Proof. We prove by case analysis on ê.

Case [E [e0]]. In this case, we assume e0 is not a value. Then, by the induction

hypothesis, either ∆, e0 →,∆′, e′0 and ê′ = E [e′0], or a typing premise fails

while reducing the subexpression e0.

Case [v1 v2]. By inversion of types, v1 = λx.e0. ê′ = [v2/x]e0 by rule (E-App).

Case [v; e]. By rule (E-Seq), ê′ = e.

Case [v[j]]. By rule (TA-Proj), Γ̂ ` v : (τi)
i∈1..n and 1 ≤ j ≤ n. By inversion

of types, v = (vi)
i∈1..n and ê′ = vj by rule (E-Proj).

Case [case v of {`i(xi)⇒ ei}i∈1..n]. By rule (TA-Case), we have

∅ ` v : 〈`i : τi〉i∈1..n \ C.

By inversion of types, e0 = `k(v) for some 1 ≤ k ≤ n and ê′ = [v/xk]ek by rule

(E-Case).

Case [va • (v0, vp, vk, vh)]. By rule (TA-Arrow-App), we have

Γ̂ ` va : τ1 → τp → (τ2 → >)→ (τ3 → >)→ > \ C.

By inversion of types, ea = λx.λp.λk.λh.e1 and ê′ = [v0/x, vp/p, vk/k, vh/h]e1

by rule (E-Arrow-App).

91

Case [vf v]. By rule (TA-Host-App), AnnotF (vf) = τ1 → τ2 \ (C, E) and

(vf v) ↓ v′ by (E-Host-App). If ∅ ` v′ : 〈succ : τ2〉 or ∅ ` v′ : 〈fail : τ3〉 such

that either τ3 ∈ E, or E = ∅ and τ3 = >, then ê′ = v′. Otherwise, a typing

premise failed and vf returned an value inconsistent with its annotation.

Case [fix(λω.ea)]. By rule (E-Fix), ê′ = [fix(λω.e)/ω]ea.

Case [async ve vp vk]. By rule (E-Async), ê′ = () and ∆′ ⊃ ∆.

Case [‹v›]. If ∆ = ∅, then no further reductions are possible. Otherwise,

ve 7→ (vp, λx.e0) ∈ ∆. Let τ \ C and E be the type and error set annota-

tion of ve, respectively. If ∅ ` Resp(ve) : 〈succ : τ2〉 or ∅ ` Resp(v3) : 〈fail : τ3〉

such that either τ3 ∈ E, or E = ∅ and τ3 = >, then ê′ = [Resp(ve)/x]e0 and

∆′ ⊂ ∆ by rule (E-Event). Otherwise, a typing premise failed and ve had

produced a value inconsistent with its annotation.

Case [adv vp]. If vp is ε or Qi :: v′p, then ê′ = () by rule (E-Advance-Empty)

and rule (E-Advance-Quiet), respectively. If vp is P ji :: v′p, then ê′ = vp, and

∆′ ⊆ ∆ by rule (E-Advance).

Case [cancel vp]. By rule (E-Cancel), ê′ = () and ∆′ ⊆ ∆.

This completes case analysis on ê, and the proof.

92

	Introduction
	Arrows
	Our Contributions

	Motivation
	Why Arrows?
	Why a Type System?

	Arrows
	Constructors
	Combinators
	Recursion and Repeating
	CPS Encoding

	Type Inference
	Value Types
	Arrow Types
	Consistency
	Type Simplification

	Semantics
	Abstract Arrows
	Operational Semantics
	Translation to Abstract Syntax

	Properties
	Discussion
	Implementation
	Compatibility with existing code
	Sample Applications
	Application Complexity
	Annotation Burden
	Inference Overhead
	Runtime Type Checking Overhead

	Usability Study

	Related Work
	Arrows
	Asynchronous Programming
	Static Analysis of Dynamic Languages

	Conclusion
	Type Simplification
	Proof of Theorem 1 (See page 50)
	Proof of Theorem 2 (See page 51)
	Proof of Theorem 3 (See page 51)
	Proof of Theorem 4 (See page 52)

